AD-A239 487 o "

AR (i::i)
ARI Research Note 91-79

Developing a General Contingency
Planner for Adversarial Planning

Paul E. Lehner and James R. Mcintyre

PAR Technology Corporation
DTIC

F‘s;j-:,,_‘ LL T E & i
@, AUG1 41991 ‘i
e

.

for

Contracting Officer’s Representative
Michael Drillings

Office of Basic Research
Michael Kaplan, Director

June 1991

91-07767
LT

United States Army
Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited.

' . 3 ¢ e m

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON JON W. BLADES
Technical Director COL, IN
Commanding

Research accomplished under contract

for the Department of the Army
N
PAR Technology Corporation N ons PR R
HI R S '
Joeant e !
Technical review by | S b ton
Michael Drillings E
i l_) SR !

A
NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical
Information Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be construed as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

|
el

. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
PAR 84-126

5. MONITORING ORGANIZATION REPORT NUMBER(S)
ARI Research Note 91-79

6b. OFFICE SYMBOL
(If applicable)

6a. NAME OF PERFORMING ORGANIZATION
PAR Technology Corporation
Decision Sciences Section

7a. NAME OF MONITORING QRGANIZATION
U.S. Army Research Institute

Office of Basic Research

6¢c. ADDRESS (City, State, and ZIP Code)

7926 Jones Branch Drive
McLean, VA

7b. ADDRESS (City, State, and ZIP Code)

5001 Eisenhower Avenue
Alexandria, VA 22333-5600

8b. OFFICE SYMBOL
(if applicable)

PERI-BR

8a. NAME OF FUNDING/SPONSORING

GANmAﬂ? .S rmﬁ Research
Institute for the Behavioral

and Social Sciences

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
MDA903-83-C~0355

8¢c. ADDRESS (City, State, and ZIP Code)
Office of Basic Research
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.
611028 74F N/A N/A

11. TITLE (include Security Classification)

Developing a General Contingency Planner for Adversarial Plannlng

12. PERSONAL AUTHOR(S)

Lehner, Paul E.; and McIntyre, James R.
13a. TYPE OF REPORT 13b. TIME COVERED
Final from 83/09 1o 84/09

14. DATE OF REPORT (Year, Month, Day)
1991, June

15. PAGE COUNT
87

16. SUPPLEMENTARY NOTATION

Michael Drillings, Contracting Officer's Representative

17. COSATI CODES

FIELD GROUP SUB-GROUP

Uncertainty

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Tactical planning
Decision making

Time pressure

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This report summarizes the first year of ‘a 3-year "effort to investigate the basic

mechanisms for solving planning problems in environments that contain intelligent adver-

saries.

A general purpose planner that can solve adversarial planning problems in a variety

of domains is presently under development,

This planner, called CP/x (Contingency planner

version x), uses a formalism for representing the plans, which are consistent with the goal
tree formalisms found in action planning in Artificial Intelligence (AI), while using plan
generation/search techniques derived from both AI action planning and fiknowledge-based"

game playing theory. CP/1.0, the first version of this planner, is described in this report,
and approaches to incorporating advanced planning techniques (e.g., metaplanning,
hierarchical, and distributed planning) are discussed.

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT

EJuncLassiriepunumited [saMEe As RPT. J oTiC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL

Michael Drillings (703) 274-8722 PERI-BR
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

1.0

INTRODUCTION

SECTION

2.8 BACKGROUND

3.0

2.1

A THEORY OF ADVERSARIAL PLANNING

3.1

Single

NN DNDNON
* . [] [] L[] . .] [] L]
et et e e o ol (e b pet

L N] L[]
=00 3O WU W N

g

Al Game Playing Programs

2.2.1
2.2.2

2.2.3

TABLE OF CONTENTS

LK B B B BE BE BN B BN B BN BE B R 2K BB B B BY B BN BERY BN Y BE R N K B BE K A K B IR A R I 4

L2 B0 B B0 BE BN BN BE IR BE AR SR BX R BE BE B B BY B Y BE A B R IR K20 BN BN B BB B BE BE N BB R N BE N

Agent Action Planning

Goal-Driven Action Planning
Hierarchical and Parallel Planning

Skeleton Plans

Opportunistic Planning

Meta Planning

Planning in Uncertain Environments
Explicitly Dealing With Time
Distributed Execution of Plans

Interactive Pl

Goal-Driven Game Playing

Goal Pairing:

* 9 600000000000

e 0 oc oo

® 9 0 06 0 00 0 00 00096 C S SO0esese¢es

® ® 9 0 9P SO0 000000 e e

*© S 0 00 0 PSP VT LI ASESH OSBRSS OPeS s

anning

® @ © 08 08 50998 SO OESEO e Sen

Relevance to Adversarial Planning

Predicting an Adversary's

Goals

® & o 0 00 000 5SS S EOS O N

Using Scenarios to Support Strategic

Planning

Overview of CpP/1.0:

3.1.1 CP/1.8 Tactical Planning
1.2 Metaplanning in CP/1.0
Summary of CP/1.0

3.
3.1.3

Advanced Adversarial Planning Techniques

e
WWWwWwwww
.« o

NNNNNDNONN

SNV B W N

® O 0 080 50 GO 000 CE G S E PSSO OGO Ce SO

® 0 60060 005808 GESGCOERTENTISTDE

A Baseline Adversarial Planner

Goal-Driven Adversarial Planning
Hierarchical and pParallel Adversarial Planning
Using Skeleton Plans in Adversarial Planning

Oopportunistic Planning in Adversarial Domains
Metaplanning in Adversarial Domans
Adversarial Planning in Uncertain Environments
Dealing with Time in Adversarial Planning ..

ii

® 6 6060880050000 ss00ven

ee sees 9000

® 0o se e e o0

PAGE

24
24
25
33
34

34"
35,
36
36
37
37
39

SECTION PAGE

3.2.8 Distributed Execution in Adversarial

Planning 200 Cossessesasnsoecsssecesotscacoos 39
3.2.9 Interactive Adversarial Planning ...cccceeese 40
3.3.10 Extending CP/x to Multi-Agent Environments .. 40

‘4.G SUMMARY LR SR BE B BE N 2R B B AE BE IR B BE IR IR B BE XX B E B X N I I B A BB IR BX AL BN BN B AR N AL L S L B A 42

REFERENCES '"'TEEREEEEEEERENFENRII NI N I BRI AR BRI B R B E B NI I I I LI B R 44

APPENDIXA © 60 06 C 00 000 8 8GOS SO OSS0 Q00800080 0000000000000 00e00e A—l

APPENDIXB PEP PSPPI T EE R I I I A Bar B B BRI B NE N B AN AR B AL I K AL AL 2R L AL AR & 2 2 AN 4 B“l

"
r

iii

FIGURE

FIGURE

FIGURE
FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

A-3:
A-4:
A-5:

A-6:2

LIST OF FIGURES

TITLE PAGE

Initial Configuration For Blocks
world Problem ® O ® O OV OV O OO O GG OGP O PO OD OO S sSSP eN

Final Configuration For Blocks World Problem ...

Goal Tree For Blocks World Problem ..ccecececcense

An Example of Goal Pairing ...cceeccecccescccccas
Initial Position in Representative Search Sequence

Direction of Play for Representative Search

sequence‘.0.0.0.......0....0.......l..
Illustrative Contingency Goal Treecceeceees

A Study by Reti. White to Move and Draw.
Black Pawn Threatening to Run to Hl. ..cccce.

Initial Position in Cp/1.@0 Othello Search

Example ® 0 0 @ 8 G 0O PO C OSSO CE O P OO QPO eN G eSO eSS eN s

Move Tree for CP/1.0 Othello Search Example
White Moves FirSt ...ceecceccccscccaccscccncans

First Contingency Goal Tree in Searchcc..
Second Contingency Goal Tree in Search ..ccceaes
Third Contingency Goal Tree in Searchccecee

Fourth Contingency Goal Tree Generated During

seaICh * S @ 6 & O 0 OO OB O SO OO0 OO S OSSOSO NS PN e

Fifth Contingency Goal Tree in Search ...ccceaes

iv

23

26

27

1.0 INTRODUCTION

One of the potentially most valuable research areas within
Artificial Intelligence (AI), from the perspe-tive of military
applications, involves the development of automatic plenning systems.
Al planners not only have the potential of autonomously solving

various low-level planning problems such as in robotics applications,

but can form the basis of expert consultation systems for higher level
military planning problems, (e.g., planning division level maneuvers).

Most of the work in AI action planning has been done in the
context of robot problem solving, where the planners developed in this
context can be extended, at least in principal, to other domains.
Recent research 1in this area has focused on the development of
techniques to extend action planners to real world complex problem
domains. In particular, these efforts have focused on adapting
planners to uncertain and unpredictable environments where multiple
components of the plan may be executed in parallel by distributed
execution modules. Although this work is relevent to the development
of practical AI planners, from the perspective of eventual military
value, it is inherently limited. 1In particular, these planners lack a
satisfactory capability to explicitly incorporate an adversary’'s goals
and actions into the planning process. Consequently, they cannot
effectively plan against an adversary that is simultaneously planning
against them.

To illustrate the importance of incorporating an adversary's
goals, consider the work in planning under uncertainty. One accepted

technique 1is the use of {information goals, where if information

necessary to execute a plan is not available to the planner, then a
goal of «collecting the required information is added to the plan,
(e.g., FIND_LOC(x), if location of x is not known). When an adversary
is present, however, that adversary is likely to have a counterplan to
prevent the collection of the required information, and may use any of
a variety of tactics (e.g., have a goal of DECEIVE _LOC(x)) to achieve
this end. Unless the adversary's counter goals and actions are
explicitly taken into account, the information goal is not likely to
be achieved.

In this report we discuss the problem of extending action
planning techniques to problems involving planning against an
intelligent adversary. 1In particular, this report summarizes the work
performed in the first year of a research program to develop automated
adversarial planning techniques. Section 2.0 provides some background
on AI planning and game playing research. Section 3.6 describes in
some detail, the capabilities and planning procedures of CP/1.0
(Contingency Planner/Version 1.0), our first version of a general
adversarial planning system. In addition, Section 3.8 also discusses
each individual action planning technique discussed in Section 2.0,
and discusses how they might be incorporated into the CP/x framework
and therefore extended to adversarial planning problems. Section 4.0

briefly addresses our plans for the next two years of this program.

L
r

2.9 BACKGROUND

In this section, research relevant to the development of
adversarial planning techinques is reviewed.

2.1 Single Agent Action Planning

Most of the artificial intelligence (AI) work in planning has

been done in the context of research where a single-agent (e.g., a

robot) must plan a sequence off action., Since the goal of this work is
to extend planning techniques to adversarial planning problems,
relevant action planning techniques are introduced below.

2.1.1 Goal-Driven Action Planning

Wwithin AI research, a common planning task involves a robot
(real or hypothetical) that exists in some type of blocks world. The
robot 1is given tasks which require it to move the blocks into some
particular configuration. Before starting, the robot is required to
'figure out' what actions need to be taken, i.e., to make a plan.

Some early planners (e.g., Fikes, et. al., 1972) would solve
problems such as this through a 'backward chaining' procedure. 1In
this approach, the planner is given a set of goals that are sufficient
to describe the goal state, a description of the initial state of the

world and a set of permissable operators or actions that can modify

the world state. The planner then looks at each goal, matches it
against the present world state and if it is not already true, looks
for an operator that can achieve it. If the operator cannot be
applied, because a precondition of its use is not satisfied, then t&e
unsatisfied. precondition becomes a new goal to be achieved. This

process is recursively repeated until all goals are satisified.

To 1illustrate this approach, assume that we have a robot that
exists in a world consisting of three square blocks and a table.
Assume further that the blocks are initially set up as in Figure 2-1.
The robot 1is capable of only one action, PUTON(X,Y)., which means pick
up block x and put it on top of object y. y can either be another
block or the table. PUTON can only move one block at a time. Assume
further that our robot has been given the task of moving the blocks so
that block A is on top of B which is on top of C (see Figure 2-2).

This goal state can be described by the conjunction of goals
ON(B,C) and ON(A,B). Assume our robot has been given these goals, and
it begins by trying to attain the first one, ON(B,C). Now, in order
to obtain this goal, the action PUTON(B,C) must be executed. However,
this action cannot be executed until the precondition that 'C is
clear' is true. Consequently, CLEAR(C) becomes a new goal to be
achieved. PUTON (C,Table) can directly achieve this and 1is
conseguently the first action in the plan. Once C 1is clear,
PUTON(B,C) is now executable and therefore becomes the second action.
At this point ON(B,C) has been achieved, and ON(A,B) which is
executable. Consequently, this becomes the third action in the plan,
at which point the plan is complete,

Oone way to record this planning process is by the use of a
hierarchical goal tree where each goal, subgoal and action, that is
part of the plan, corresponds to a node in the tree. For example, a
goal tree that corresponds to the plan generated in the above example

is found in Figure 2-3. There are two features of this goal tree that

z e

should be noticed. First the sequence of actions in the final plan

are contained in the terminal nodes. Simply read them from left to

TABLE

Al

FIGURE 2-1

INITIAL CONFIGURATION FOR BLOCKS

WORLD PROBLEM

r

TABLE

.

FIGURE 2-2

FINAL CONFIGURATION FOR BLOCKS WORLD PROBLEM

ON(B,C) /A ON(A,B)

/S N
ON(B,C) ON(A,B)
/ AN
CLEAR(B) PUTON(B,C) PUTON(A,B)
/
PUTON(C, TABLE)
FIGURE 2-~3

GOAL TREE FOR BLOCKS WORLD PROBLEM

right. Second, by examining the ancestors for each action, we can
determine why each action needs to be taken. For instance, the action
PUTON(C,Table) is tazken to CLEAR(C), which is necessary before ON(B,C)
can be achieved, which is one of the original goals to be achieved. A
robot problem solving plan that 1is represented as a goal tree,
therefore, not only consists or the actions that need to be executed,

but also of an explanation of why each action is needed. It is also

important to note that this goal tree was generated through a
recursive ‘depth~first' expansion of the tree. For instance, before
adding ON(A,B) to the goal tree, all of the descendants of ON(B,C)
were added first.

2.1.2 Hierarchical and Parallel Planning

More recent planners (e.g., Sacerdotti, 1976, 1977; Vere, 1981)
have introduced two important innovations to this simple goal-seeking
process; hierarchical plans and the production of parallel plans. 1In
hierarchical planning, goals and subgoals are, in effect, put in a
priority order. The more important goals are first worked out to a
reasonable level of detail (i.e., working out the major steps of the
plan), and 1less important goals, the details, are considered later.
One common technique for implementing hierarchical planning is to
postpone consideration of preconditions. In the above example, for
instance, the consideration of the CLEAR(C) precondition would be
delayed wuntil ON(A,B) was first considered and added to the goal tree.
In another context, say planning a trip from Washington to Chicago,
there is Jittle value in determining the details of getting to én
airport unfil the major step of determining which flight to take, and

therefore which airport, has been completed.

In parallel planning, instead of trying to achieve a set of
goals in some order and then trying to reorder the goals if this
doesn't work, the planner assumes all goals can be achieved
simultaneously unless interactions between the goals are found that
require the imposition of a time order on the consegquent actions. For
instance, in the above example, it was simply fortuitous that the goal
ON(B,C) was explored before ON(A,B). Assume, ON(A,B) were the first
goal achieved. Then when ON(B,C) 1is explored, the first subgoal
generated, CLEAR(C), 1is inconsistent with the fact that ON(A,B) has
been achieved, requiring that the planner must undo ON(A,B). In
parallel planning, ON(A,B) and ON(B,C) would be assumed to be
seperately obtainable goals until it was ‘'discovered' that a
consequence of achieving ON(A,B) is that it violates a precondition of
the action PUTON(B,C), namely that CLEAR(B) 1is true. This would
result in the planner requiring that ON(B,C) be attained before
ON(A,B).

As can be seen, an important advantage of parallel planning is
that it avoids premature commitment to a particular ordering of goals
and actions, thereby avoiding the unnecessary work on an infeasible
ordering that was initially selected arbitrarily. In order to
represent such plans with parallel branches, the goal tree format
needs to be expanded so that goals/actions can be represented in
parallel, in effect, resulting 1in hierarchically more detailed
PERT-1like networks. In AI, such PERT-like networks are usually
referred to as a Procedural Nets.

’ «
ks

2.1.3 Skeléton Plans

Another approach to planning involves the use of stored

skeleton plans that outline a general sequence of steps for solving a
variety of planning problems (Friedland, 1979). Planning with
skeleton plans usually proceeds in two stages. First a skeleton pPlan
or subplan is found that is applicable to the given problem. Second,
the abstract steps in the plan are filled in with problem-solving
operators relevant to the particular problem domain. This

instantiation process involves large amounts of domain-specific

knowledge, often working through several levels of generality until a
problem-solving operator is found to accomplish each step in a
skeletal plan, If a suitable instantiation is found for each
abstracted step, the plan as a whole will be successful,

2.1.4 Opportunistic Planning

Another approach to planning is that of opportunistic planning
(Hayesroth, 1980). This approach is characterized by a flexible
control strategy that allows development of a plan in a combined
bottom-up and top-down fashion. Problem solving actions will switch
from one aspect of the planning problem to another depending on where
the next best opportunity exists to further refine a partially
completed plan. One result of this planning approach is that the
planner will generate various islands of planning action (i.e., local
subplans) that may be merged into a single integrated plan near the
end of the planning process.

2.1.5 Meta Planning

Meta planning is a general term that refers to reasoning about
the planning process. In complex problem domains where alternative
problem solving strategies are available, it is useful to incorporate

in a planner a mechanism that explicitly reasons about the best

10

approach to solving a planning problem. Examples of this kind of
reasoning can be found in the MOLGEN system (Stifick, 1981) and in PAM
{wilensky, 1981).

2.1.6 Planning in Uncertain Environments

A major restriction of most planning systems is <that the
planners must have sufficient information about the target world to

simulate courses of action to the levei of detail required to be able

to predict all consequences of each proposed action. Clearly, this
complete world knowledge is not available in most practical
situations. Indeed, uncertainty about the target world usually comes
in many forms, such as a lack of information about the present world
state, an inability to fully predict the affect of an action on the
world state, or even an inability to anticipate the response of other
agents in the target world. Within the action planning area, a number
of techniques are being explored for their potential to handle these
types of uncertainty. One technique for planning in wuncertain
environments involves the use of information goals, requiring that
certain data be acquired during plan execution. For example, a plan
may be developed that includes the action "move object A toAlocation
x", even if the location of A is unknown to the planner. This can be
done by inserting an information collection goal of "Find location of
object A", which can instantiate a "detect-by-TV" operator at the time
of execution.

Another set of techniques for planning under uncertainty
involves an ability to dynamically repair plans. In most context
where there exists a significant degree of wuncertainty, it is

impossible to plan 1long sequences of actions in advance, because

11

unexpected conditions usually occur very early during the execution of
the plan. In this type of context the planner must anticipate a need
for replanning. An economical way to do this type of replanning is to
isolate the previous goals' actions affected by the newly discovered
conditions, and then to replace them with new subplans which will work
in the new state. In other words, attempt to save as much of the
original goal tree as possible. This type of replanning technique can
be found in Hayes (1975).

2.1.7 Explicitly Dealing With Time

Most planning systems treat actions as though they occured
instantaneously. They incorporate no model of what happens during the
execution of an action, and consequently are incapable of describing
world states during action execution. Although the need for such
time-dependent models 1is commonly accepted (see Sacerdotti, 198¢),
there is no ongoing work in this area. (See Hendrix, 1973, for some
early work.)

Another way in which time can be dealt with involves the
scheduling of actions. In particular, Tate and Daniels (1977) and
Vere (1981) describe planners that translates simultaneous actions in
parallel plans 1into specific action start and end times in a PERT
chart.

2.1.8 Distributed Execution of Plans

When parallel branches of a plan are generated, it may be
desirable to also execute them in parallel. The difficulty that often

results with such distributed execution is the occurance of

IS
rd

interactions between different execution modules. Typically,

interactions are detrimental, and generate problems involving resource

12

conflicts and the undoing of each others' achievements.

Techniques being developed to resolve these types of problems
usually involve communication protocols that keep the various
execution modules informed of each others relevant activities, (e.g.,
Smith 1979) and dgeneral procedures that enforce independence between
modules by locally resolving interactions, (e.g., such as when two
automobiles arrive simultaneously at an intersection and the vehicle
on the right side has the right of way).

2.1.9 1Interactive Planning

Research in robot and other automatic problem solving domains
have resulted in a number of planning systems that function
autonomously, but have 1limited capabilities. One way to expand the
capability of such systems 1is to develop interactive systems where
both the human user and the automatic planner cooperate to develop a
satisfactory plan. An example of such an interactive planner is fournd
in Wilkins and Robinson (1981).

2.1.1¢0 Relevance to Adversarial Planning

It 1is clear that the above-discussed techniques and Al planning
issues are relevant to any planning domain, including adversarial
planning. Unfortunately, from the perspective of planning problems
involving an adversary, this work 1is inherently limited. This is
because neither the formalisms for representing plans nor the planning
procedures have any convenient mechanisms for incorporating the goals
and actions of an adversary.

To illustrate the importance of incorporating an adversary's

goals, consider again the work in planning under uncertainty. As

noted there, information collection goals are sometimes added to a

13

plan to collect necessary data at the time of plan execution. When an
adversary 1is present, however, he is likely to have a counterplan of
his own to prevent the collection of the required information, and may
use any of a variety of tactics (e.g., deception) to achieve this end.
Unless the adversary's counter goals and possible actions are
explicitly taken into account during planning, the information goal is

not likely to be achieved.

A similar problem occurs with the work in distributed planning
and execution, where the use of communication protocols and procedures
to enforce coordination are relied upon. When an adversary is
present, that adversary 1is likely to engage in actions to disrupt
communication and coordination. Consequently, unless these
adversarial countergoals are explicitly considered in planning,

successful execution of the plan is unlikely.

2.2 Al Game Playing Programs

As discussed above, most of the research in AI planning has been
done in the <context of planning the actions of a single agent.
Although this work addresses a number of issues, it does not directly
attack the problem of planning against an adversary. Another area of
Al planning research, that 1is specifically oriented toward planning
against an adversary, involves the development of intelligent game
playing programs. The relevance of this work to the more general
problem of planning against an adversary is discussed below.

2.2.1 Goal-Driven Game Playing

z .

For purposes of this discussion, two types of game playing

programs are distinguished as those which utilize a 'planning without

14

goals' approach and those which wutilize a ‘'planning with goals®
approach. A typical example of the 'planning without goals' approach
is seen in the Northwestern University chess program (Slate &
Atkinson, 1978). This program selects a move by examining ;11
possible sequences for six or seven moves. It then does a weighted
linear evaluation of the features (relative number of points,
mobility, etc.) of each of the terminal positions. The program then
picks the move that maximizes the minimum possible evaluation in the
terminal positions. At no point during the planning process does this
program focus its attention on achieving specified goals or
objectives. Or to put it another way, the program contains no
conceptual knowledge about what it should be trying to do, rather it
uses the computational power and speed of the computer to review
everything it can do and then through a simple decision rule, chooses
the 'best'.

This approach has been very successful in games such as
checkers and chess where the average number of moves in a position
(around 8 for checkers and 25 for chess) is small enough so that a
more or 1less thorough examination of all possible move sequences, for
at least several moves ahead, is feasible. 1In fact, virtually all of
the chess and checkers programs noted in the popular literature, such
as 1in computer <chess tournaments or programs available for home
computers, use some variant of this approach. Unfortunately, in other
games, such as the oriental game Go, where there are around 258 legal
moves per position, and 'real life' planning under adversity
situations,: where an opponent has virtually a limitless variety éf

actions available to him, the use of this type of exhaustive search

15

approach is not feasible.

An alternative approach to game playing, that is more in the
mainstream of AI research, involves the use of goals and objectives to
control the move 1look-ahead process; see Berliner (1977), Pitrat
(1976), Wilkins (1979), Reitman and Wilcox (1979), Lehner (1983). The
essence of this approach is that if a program is careful in selecting
objectives it should try to achieve, then it should be sufficient for
planning purposes to only examine actions that potentially aid in
achieving those objectives.

To 1illustrate this goal-oriented approach, assume that we have
a chess position where one player, White, believes it feasible to find
a mating combination. Consequently, White starts with the goal of
CAPTURE_KING. To do this, White isolates a square he needs to occupy
with his queen to achieve checkmate. However, this square is
protected by a black knight. Consequently, REMOVE_KNIGHT from this
square becomes a subgoal, This type of subgoal can be achieved by
actually capturing the piece, so CAPTURE_KNIGHT becomes a subgoal of
REMOVE_KNIGHT. If the knight can be directly captured, then that
capture move becomes the first move. If not, a new subgoal
THREATEN_KNIGHT is activated that results in a move that threatens to
capture the knight on the next move. 1In this example, therefore, the
first move of a goal-driven 1look-ahead 1is one that threatens the
knight, so that it can eventually be captured, so that it is no longer
defending the black king, so checkmate can be achieved. By carefully

considering objectives and goals at each step in look-ahead in this

» w

way a program is able to isolate only a few moves that need to be

examined.

16

2.2.2 Goal Pairing: Predicting an Adversary's Goals

Oof course, in order to effectivelf limit the number of possible
move sequences to examine, the game playing program must not only
determine its own goals, but it must be able to guess the goals of an
opponent. Surprisingly this is often not nearly as difficult as might
be anticipated. This 1is because of a general iechnique (often only
implicitly used by developers of AI game playing programs) that will
be referred to as 'goal pairing'. Goal pairing is simply the process
of identifying an adversary's countergoal to each friendly goal or
subgoal that has been generated. 1In our chess example, for instance,
it is reasonable to assume that White's goal of CAPTURE_KING

ack's goal of SAVE KING and furthermore that Black

-

corresponds to B
would 1like to prevent the removal of his knight, by preventing its
capture. Therefore, after a white move that threatens black's knight,
black's move will be one that removes that threat. Figure 2-4 lists
the White/Black goal pairs that would result from this example.

It should be noted that most of the research on the use of
goals and plans game playing has been oriented toward developing
tactical analyses programs. That 1is, the planners are designed to
handle tactical planning problems where even 'minor' deviations from a
correct move sequence can lead to failure, The next section discusses
some work extending these techniques to high-level strategic planning.

2.2.3 Using Scenarios to Support Strategic Planning

In many adversarial planning situations, in both game playing
and real-life conflicts, human planners consider high-level strategic
plans that can not be analyzed by the same type of precise

action-by-action look-ahead that is characteristic of tactical

17

WHITE GOALS

CAPTURE_KING

1

REMOVE_KNIGHT

l

CAPTURE_KNIGHT

l

THREATEN_KNIGHT

Ll

BLACK COUNTER GOALS

> SAVE_KING

1

—J» PREVENT_REMOVE_KNIGHT
> SAVE_KNIGHT
—> STOP_THREATEN_KNIGHT
FIGURE 2-4

AN EXAMPLE OF GOAL PAIRING

18

analysis. This 1is because the strategic plan is at such a high level
that there will usually be a large number of reasonable move sequences
that are consistent with high-level strategic goals. Or, put another
way, even after goals and objectives are specified for both sides,
there are too many reasonable plans of action consistent with those
objectives and goals to be able to consider them all. 1In military

planning, for instance, it is not feasible to translate a Corps level
concept plan into a precise plan of action where all possible friendly
and enemy actions are taken into detailed consideration and
anticipated. Despite these problems, it is clear that human planners
are able to perform some type of strategic planning or look-ahead that
anticipate likely results.

What often makes this type of strategic planning possible is
that wusually all the action sequences that follow the basic pattern in
a étrategic plan will have a number of common positional side effects.
Or, equivalently, any one sequence of actions that attains a strategic
plan 1is representative, strategically, of all the possible sequences.
Consequently, it is possible to determine some of the consequences of
a proposed strategic plan by exmaining just one specific plan of
action to implement that plan and generalizing results to other
possible plans of action, In Lehner (1983), this is referred to as
'representative searching', in military planning it is sometimes
referred to as 'playing out a scenario'.

A representative search program for strategic planning in Go is
found in Lehner (1983). An example illustrating how this program
works is ;rovided below. Note that the spatial/visual nature ;f

strategic plans in Go should make this example understandable for

19

readers unfamiliar with the game.

The program began with the position in Figure 2-5. The White
stone at 03 and 04 are loosely surrounded by the Black stones at K4
and around Q4. Black, the program, starts with the goal of trying to
capture these White stones. Consegquently, the representative search
program starts with a top-level goal of CAPTURE the White stones

around 03, and assumes Black's countergoal is to SAVE those stones.

In order to capture a group of stones in Go, one must first surround
them. Consequently, the first subgoal of CAPTURE (03) is to SURROUND
(03), for which White's counter goal is to ESCAPE. Now in order to
effectively prevent ESCAPE, Black must close up the line between K4
and Q6, by placing stones in between them. Black can do this by
playing a sequence of stones from Q6 to K4 (ENCLOSE RIGHT) or by
starting at K4 and moving toward Q6 (ENCLOSE_LEFT). The program
starts with the former. This returns the move @6, After 06 is
played, the only avenue of ESCAPE for White is between the stones K4
and 06, so White's assumed response is M5.

After the White play at M5, attempting to enclose the White
stones by playing stones in the K4-06 line is not feasible because
White has already broken through that line. Consequently, a new goal
of CREATE_LINE, to continue the attack by creating a new line of
attack 1is called. Also, since the Black stone at K4 is also now
loosely surrounded, the Black goal of SAVE (K4) 1is also added,
resulting in an ESCAPE subgoal.

The gonjunction of the Black CREATE_LINE and ESCAPE goals
results in the move at K6. White continues his own ESCAPE by smashing

through the newly formed K6-06 line with a play at M7, at which point

20

19
18
17

16
15

14
13
12
11

10

e

- D
o -O- -

INITIAL POSITION IN

. - L) - - - -
. .] - L] . .
. . L] . - - .
. L]] L] . . .
L3 L) L]
- . L] . - * -
- . . L L] - .
- .] - . . .
. e . - - . -
.
. . . - . . .
-
. - . . » .

O = WHITE

FIGURE 2-5

REPRESENTATIVE SEARCH

21

] - -
.] .
L] . .
. [.
. L] .
. L3 L3
. - .
. L3 [
. L] .
L) . .
. - .
- . .
. . .
. - -
. . .
- . .
- L] .
. . .
- . .

SEQUENCE

19
18
17

16
15

14
13
12
11

10

white has successfully escaped, because CREATE_LINE cannot build a new
attack 1line. However, also at this point the representative search
program ‘notices' that in the process of attacking the White stones on
the right, he has nearly surrounded the White stone at G4.
Consequently, he can mnow switch direction and attempt to SURROUND
(G4) .

There are several things to note about this example. First,

that any seguence of reasonable moves consistent with the direction of
play depicted by with the arrows in Figure 2-6 (of which there are
hundreds) would have the same positional consequences, namely that
White escapes, but that Black can start o new attack in a different
direction. Consequently, other move sequences that attempt to achieve
the high-level goal of SURROUNDED (03) do not need to be considered in
detail. Second, the fact that Black's original goal was unobtainable,
but that pursuing it set up the opportunity to obtain another, equally
valuable goal, is not wunique to this example. It is often the case
that the primary value in engaging in one strategic course of action
is that it directs an adversary's resources and attention in a
direction that it makes a second follow-on course of action very
feasible. Such indirect strategies and goals are very important to
military planning, and are precisely the type of planning which this
type representative search or scenario generation procedure should be

effective.

22

19
18
17
16
15
14
13
12
11

19

[« IR N |

w

D
* -
D

DIRECTION

L] L)
- . - - . . L] - - - - . L .
. - . - - - L) . . .
- - L L L4 - . . L d L3 . . - .
. L) o L) L) . . .
e [. ¢ - .
L [. . - L) . . .
. . - - . L)
. L] - L . . . » . . L . . .
e e . - . . -
. L} . . - L] . L) L -
. L) L - . - - . . °

. . . .
. L] . .
- - . .
. L] . .
. . . -
. L]
. . » 3 . . L]

FIGURE 2-6

OF PLAY FOR REPRESENTATIVE SEARCH SEQUENCE

23

19
18
17
16

15
14

13
12
11

1¢

3.9 A THEORY OF ADVERSARIAL PLANNING

Overall the goal of this research program is to extend action
planning techniques into domains involving an intelligent adversary.
The focus of the first year of this effort has been to implement
initial version of an adversarial planner that could serve as a
baseline system on top of which alternative techniques for adversarial
planning could be implemented and evaluated. Section 3.1 below
describes the baseline system, CP/1.8 (Contingency Planner/vVersion
1.6), which we have developed. Section 3.2 shows an example of CP/1.0
planning behavior in the game of Othello. Section 3.3 then examines
each of the individual planning techniques noted in Section 2.8 and
discusses how, in theory, they could be embedded within the

adversarial CP/x framework.

3.1 Overview of CP/1.0: A Baseline Adversarial Planner

CP/1.0 utilizes two different types of planning procedures:
tactical planning and metaplanning. Tactical planning occurs whenever
Cp/1.8 must determine the outcome of a well-defined goal/countergoal
pairing. That is, tactical planning involves the process of
generating a move tree to determine whether the planner's goal on the
advers=2ry'c countergoal will be achieved, and to discover some side
effects that result from attempting to achieve a goal. Metaplanning,
on the other hand, involves the use of knowledge about planning to
control the planning process. Sections 3.1.1 and 3.2.1 below describe

each of these planning procedures.

24

3.1.1 CpP/1.8 Tactical Planning

Like most planners, CP/1.06 treats planning as a problem in goal
tree formation. Described below are the type of goal trees CP/1.6
generates in performing a tactical search and how it goes about
generating them.

Contingency Goal Trees -~ Within CP/1.0, plans are represented using a

general formalism called a Contingency Goal Tree (CGT). CGTs are
similar to the goal tree used in single agent action planning, with
the important difference that each node in the tree include both a
planner's goal and an adversary's assumed countergoal. Figure 3-1
shows a possible CGT for a single move sequence leading to a draw for
White in the <chess position show in Figure 3-2. CP/1.0 atempts to
solve adversarial planning problems by generating multiple CGTs that
combine to form a set of contingency plans against each of the
reasonable options available to an adversary. In a game, such as
chess, the set of terminal nodes in the CGTs combine to form a move
tree. Cp/1.8 accepts as input any incomplete CGT and attempts to
generate a set of expanded CGTs that represent contingency plans for
achieving the top goal in the input CGT. Consequently, CP/1.6 will
either return a set of CGTs; or NIL if the top goal cannot reasonably
be achieved. To solve a planning problem, CP/1.0 uses the following
basic procedures for generating CGTs.

Goal-driven, Depth-first CGT Expansion ~ Given an incomplete CGT,

CpP/1.0 will expand the CGT in a recursive depth-first manner. It will
begin by fdentifying the first node in the input CGT that contains ‘a
goal pair for which a well-defined action is not defined and will

process the goal for the side on the move,.

25

DRAW - WIN

(For White) (For Black)

{OR NOT(Q(BP)) Q(WP)]-[AND Q(BP) NOT(Q(WP))]

{OR CAP(BP) Q(WP)]-[AND Q(BP) CAP(WP)]

/

{THREATBOTH CAP(BP) Q(WP)]-[AND Q(BP) CAP(WP)] Q(WP)-CAP(WP)
MVTO(K,G7)-NIL MVTO(K,BP WP)-MVTO(BP,h1) MVTO(K ,WP)-MVTO(K,WP)

1N

NIL-MVTO(BP,h4) MVTO(K,f6)-NIL NIL-MVTO(BP,h3)

MVTO(K,e6)-NIL NIL-MVTO(K,bb)

Q() = Queen pawn

CAP() = CAPTURE
BP = Black Pawn
WP = White Pawn

FIGURE 3-1

ILLUSTRATIVE CONTINGENCY GOAL TREE

26

MVTO(K,d7)-NIL

FIGURE 3-2

WHITE TO MOVE AND DRAW.

A STUDY BY RETI.

BLACK PAWN THREATENING TO RUN TO H1.

27

CpP/1.8 enters a search problem with a top-level goal-countergoal

pairing and a possible side effects list (described below).

Depending on the position, processing of the 'present' goal (usually
the goal most recently added to the CGT) of the side on the move will
result in the generation of a pair of subgoals, which are then added
onto the CGT, or it will result in the generation of a move. If a new
goal pair 1is added to the CGT, then the new present goal of the side
on the move is processed to produce a new subgoal pair or move. When
a move 1is proposed, it is placed on the hypothetical board. The most
recently added goal for the new side on the move becomes the present
goal which is processed to see if a new subgoal pair or move can be
generated.

Processing of the present goal 1involves reading in a 'goal
object’' from a separate file and executing the procedures attached to
the goal object. Goal objects are simply structures containing data
and functions acting on this data. They interface with the particular
problem environment through four functions. 'Subgoal' returns a list
of subgoal(s) that is (are) currently most appropriate. ‘'Countergoal'
examines the environment and returns a list of suitable
countergoal(s) . 'Failed' tests if the goal in the present position
has clearly failed. 'Succeeded' tests if the goal in the present
position has already succeeded. '‘Feasible' quickly tests the
feasibility of a goal and returns true if the goal could be feasible
in the current environment, 'Action' updates the enviornment as a
function of. the goal/countergoal pairing.

Processing of an instantiated goal object for the side on move

will generate an assumed countergoal for the opposing side, along with

28

one of the following:

1. an update of the hypothetical world, after which CpP/1.0
calls a domain specific utility to determine which side
moves next;

2. a single subgoal, which is added to the CGT and is then
processed as the new present goal;

3. an incomplete subtree, usually specifying a sequence of
subgoals, of which the first subgoal is processed as
the new present goal after the entire subtree is
added to the CGT;

4., a NIL if processing of the present goal does not result
in an action, subgoal or subtree, in which case the
antecedent node for the side on the move is once again
processed as the new present goal, thereby starting a
new branch of the CGT.

5. A ‘'failed' or 'succeeded', which is similar to No. ¢
above except that instead of moving to an antecedent
node, a move backup must occur as described in the
subsection below.

Goal-driven backup - An individual move sequence terminates whenever

either the planner's or adversary's top-level goal is clearly
obtainable. Obtaining the top goal, however, does not necessarily
imply that the move sequence is a success. A move sequence may result

in a number of unanticipated side effects that result in providing

the opposiag side with new opportunities. FPor instance, 1if the
planner enters a search problem with a SAVE(X) goal, paired with an

adversary's CAPTURE(X) countergoal, a particular sequence may result

29

in the planner successfully saving X, but the situation has changed
such that the adversary now has a new target, Y, to pursue. It is now
feasible for the adversary to attempt to CAPTURE(Y) instead. 1In
CpP/1.8, unanticipated side effects are defined as new opportunities,
which in turn are defined as new goals to pursue that were not
feasible in the original position.

In order to find new goals, CP/1.0 engages in a sequence of
‘information searches.' At the end of a move sequence where one side
achieved its initial goal, CP/1.0 iterates through a set of recursive
calls to CP/1.8, with each of the goals in a 'possible side effects'
list, to try to find a way to continue play for the opposing side.
The type of move backup that will occur depends on whether or not
there exist new goals for the opposing side.

Whenever processing of the present goal returns a NIL, and CpP/l.¢
cannot move wup to an antecedent goal (e.g., when it is the top goal);
or when it returns a 'failed', a backup on the proposed move sequence
must take place. In CP/1.8 the procedure for determining how far to
backup is goal-driven and proceeds according to the following three
steps:

l. iterate through a sequence of information searches

on the position, by recursively calling Cp/1.8, to
identify new goals that can be pursued by the
failing side;
2, based on the results of the information searches,
identify the first node in the CGT (assuming a 2
depth-first ordering of nodes) that is

impacted; and

30

3. remove all nodes that were generated after the
impacted node (which automatically includes
the moves identified in the terminal nodes),
modify the impacted node through a conjunction
or disjunction of new goals, and continue the
CGT generation process.

The information searches in 1. proceed as described above.
Regarding 2. and 3., if the information searches do not discover new
goals, then the only node in the CGT that is clearly impacted is the
one that directly generated the most recent move for the side that
failed. For the side on the move, the goal is modified to be a
conjunction of tha* _,oal and NOT[MOVE(X)], where MOVE(X) is the move
that failed. Al: nodes added to the CGT after this modifified goal
are removed ari CGT expansion continues as before.

If tne information searches do discover unanticipated side
effects (i.e., new goals to consider), then it 1is necessary to
discover which nodes in the CGT the new goal interacts with. That is,
for each goal in the CGT, it needs to be determined if the discovery
of this new opportunity would affect how the planner should go about
crying to achieve that goal. Since goal objects carry with them lists
of possible side effects, it is a matter of selecting the first goal
in the CGT that has the discovered goal on its side effect list.
Frequently, it is assumed that a newly discovered goal impacts the top
goal in the CGT, in which case all generated nodes in the CGT are
removed and the top goal is modified to be a conjunction er
disjunction of the original top goal with the new goal. However, in

various domains, such as some war games, there may be a number of

31

independent areas of 1local conflict, where a discovery of local side
effects clearly do not impact overall planning.

3.1.2 Metaplanning in CP/1.0

The metaplanning facility in CP/1.06 is a general, extendable
facility for deciding what planning strategies to use. Through the
use of domain specific pattern matching routines, it can be used to

select a top-level goal pair for a contingency goal tree. It can also

be wused to select between the tactical planning mechanism described in
SXection 3.1.1 and any other planning mechanisms that may be provided.
Other planning mechanisms will probably be most useful in the opening
moves of a game like Chess, where a number of standard book openings
are used, and in the final moves of a game like Othello, where there
are few possible moves leading to widely varying outcomes.

The metaplanning facility, like the tactical planning facility,
uses a type of goal objects. However, unlike the tactical planner,
the goal objects are not paired because the metaplanner does not
attempt to match the planning mechanism of the opponent. Like the
tactical planner, each metagol object contains a feasibility test.
Rather than a list of possible subgoals, the metagoal objects contain
a list of planning actions to be taken in sequence to achieve the
goal. Examples of types of planning actions are contingency planning
using a specific top-level goal pair and exhaustive search. Each
metagoal object may also include an alternate metagoal object to be
tried if the first fails.

The =metaplanner works in a very straightforward manner. When
it is called, it 1is given an initial metagol object to attempt. It

first uses the feasibility test to assure that the plan outlined in

32

the frame 1is reasonable in the given situation. If it is, the
metaplanner attempts to use the first planning action from the
planning action 1list., The metaplanner continues to use the planning
actions on the 1list until the list is exhausted or until one of the
planning actions fails. If a planning action fails or the metagoal is
not feasible, the metaplanner attempts to process the alternative
metagoal frame in the same manner if processed the original.

3.1.3 Summary of CP/1.0

Overall, CP/1.0 implements an approach to tactical planning
that incorporates the goal-driven AI game-playing techniques discussed
in Section 2z.2Z. In particular, the tactical planning facility
incorporates the same techniques found in tactical planners for Chess
(Berliner, 1978); Pitrat, 1977; and Wilkins, 1979), and Go (Reitman
and Wilcox, 1979). The facility to search for unanticipated side
effects can be used to generate the type strategic planning behavior
discussed in Lehner (1983). Unfortunately, because of the limited
nature of our initial test domain (the game of Othello). This later
capability has not been significantly tested.

What is wunique about CP/1.6 1is not so much what it does, but
rather how it does. First, the CpP/l.0 software is generic, which
makes it suitable for application in multiple domains. Previous
systems that have shown adversarial planning capabilities were
entirely domain specific, i.e., written as game playing programs.
Second CP/1.06 utilizes a formalism for representing plans, CGTs, that
is a generalization of the goal tree formalism found in Al actiom
planning. Consequently, both Al acticn planning and Al game-playing

techniques can in theory be incorporated into the CP/x framework. The

33

Cp/x framework therefore provides the opportunity to merge these two
sets of techniques into the combined area that we have called
adversarial planning.

An example of CP/1.0 planning is found in Appendix A.

3.2 Advanced Adversarial Planning Technigues

The overall goal ¢to this research program is to extend action
planning techniqgues to problems involving planning against an
intelligent adversary. Section 2.6 discussed single agent planning
techniques that could also be appropriate for adversarial planning
preklems, Section 2,1 presented our intitial bageline prlanning
system, CP/l.0, that provides a testbed for examining alternative
techniques for adversarial planning. In this section each of the
advanced action planning techniques noted in Section 2.1 are discussed
from the perspective of how they might be incorporated within the

general CP/x framework.

3.2.1 Goal-Driven Adversarial Planning

As discussed 1in Section 2.1, action planning techniques are
generally goal-driven. Planning 1is wusually treated as a problem in
goal tree formation,. The same 1is true of the CP/x approach. 1In
particular, we have extended the concept of a goal tree to that of a
contingency goal tree. A CGT is a generalized goal tree in as much as
if a CGT did not include the adversary's goal, it would contain the
same information as a simple goal tree. In the same way that actiqn
planners tyeat planning as a problem in goal tree formation, CP/1.8
treats adversarial planning as a problem in contingency goal tree

formation.

34

3.2.2 Hierarchical and Parallel Adversarial Planning

As discussed in Section 2.1, hierarchical plenning involves a
planning process where goals are put in priority order, so that the
more important goals, (i.e., the goals that correspond with major
steps of a plan) are worked out first and less important goals, (i.e.,
the details), are considered later. 1In CpP/x framework, hierarchical

planning could also occur. In the situation where higher levels of

planning abstraction are defined, this would work as follows.

Recall that in CP/1.80 depth first planning, (i.e., subgoal
generation) continues until it gets to the point where there exists a
utility for updating the hypothetical world for the current
goal/countergoal pairing. In the game of Othello, this simply
occurred at the 1level of a move-nil pairing. For a domain in which
there exist domain specific utilities for updating the hypothetical
world at different levels of goal/countergoal pairs, then CP/x can
plan at different levels of abstraction. First, CP/x would plan at
the most general 1level of abstraction by engaging in depth first
planning until it reaches the first set of world update utilities.
This would result in a set of high-level contingency plans. Then,
using these high level contingency goal trees as the input CGTs, CP/x
would continue to expand the CGTs by continuing the depth first
subgoal generation process beyond the first world update utility
encountered and stopping at the second. Cp/x would do this
recursively for all defined levels of abstraction.

Of coyrse, in order to do this type of hierarchical planning, the
domain in which CP/x 1is applied requires that these update utilites

can in fact be defined. In games such as Othello, Chess, and Go,

35

generating such wutilities is not possible. However, in domains such
as some war games, utilites may be defined for different levels of
conflict (e.g., CORPS, Division, Battalion).

With regard to parallel planning, no explicit techniques have
been identified that can incorporate parallel planning into the CP/x
adversarial planning environment. However, in the same way that a
simple goal tree can be generalized to include parallel branches, it
is reasonable to assume that a contingency goal tree can also be
generalized to include parallel branches.

3.2.3 Using Skeleton Plans in Adversarial Planninjg

In action planning, this type of planning involves the use of
stored skeletal plans that outline a general sequence of steps for
solving problems in a variety of problem areas. Skeletal plans are
usually stored in the form of partially complete goal trees. In the
case of adversarial planning, skeletal plans can be stored in the form
of partially complete CGTs. Since, CP/x accepts as input a partial
CGT of any form, (i.e., any part of the tree can be left out) then
skeletal planning can occur in a variety of ways. For example, a
skeletal plan may have just the top layers of the CGT, with both the
friendly and adversary countergoals, defined. On the other hand, a
skeletal plan may involve a contingency goal tree with just the
friendly goals identified and the adversarial goals left uncertain.
In the latter case, then, we would have prestored the major seguence
of actions the planner would take and CP/x would try to fill in the
adversary's wwountergoals.

3.2.4 Opportunistic Planning in Adversarial Domains

Opportunistic planning as discussed in Section 2.8 1is an

36

approach to planning that is characterized by flexible planning
control structure that allows development of a plan in both bottom-up
and top-down manner. At present, CP/x is not compatible with this
type of flexible control structure, However, the representative
search technique can be emulated within the CP/x approach. As was
discussed in Section 2,1, representative searching does exhibit a
number of behaviors that are similar to that of opportunistic
planning.

3.2.5 Metaplanning in Adversarial Domains

As discussed in Section 3.1, metaplanning is incorporated
within the CP/x framework through the use of metagoals. Consequently,
metaplanning is one advanced action planning technique that has
already been incorporated into the CP/x framework. Unfortunately,
because of this 1limited nature of our test domain (the game of
Othello), this facility has not significantly tested.

3.2.6 Adversarial Planning in Uncertain Environments

Adversarial planning in uncertain environments involves at
least two dimensions of uncertainty. First, there is the dimension of
uncertainty about the adversary's goals., Second, there 1is the
dimension of wuncertainty about the position of adversary resources.
In the CP/x framework, uncertainty about the opponent's goals and
objectives is handled by generating contingency plans for each
possible goal and objective. One 1limit of the existing CP/1.0
framework is that there does not exist a mechanism for limiting the
number of possible adversary goals or objectives that are considered.
As a result, in some domains there may be a combinatorial explosion of

the number of CGTs that are generated. In order to prevent this from

37

occurring, a deductive mechanism should be added that will identify
the most 1likely adversarial countergoals of each of the friendly
goals. Utilization of this deductive mechanism should be goal
specific and would be controlled with routines attached to the
countergoal slot in the goal objects in a CP/x knowledge base,

For the second problem, where the planner has a lack of knowledge
about the position or nature of adversary resources, there exist three
subproblems that need to be solved. First, there is the problem of
simply deducing or making a best guess as to where and what those
resources are. Second, there 1is the problem of planning to collect
information about uncertain resources. Third, there is the problem of
generating plans that take into account alternative contingencies in
the quantity or location of resources; that is trying to generate
plans that are rcbust against lack of knowledge.

The first problem 1is purely an inferencing problem and is not
within the scope of this research program. The second problem, from
our present persepctive, appears to require only the use of
information goals, [i.e., COLLECT_INFORMATION(X)] paired with an
adversary's countergoals of preventing the collection of information.
Whether the adversary does that by directly intercepting our
information collection resources or through deception tactics, will be
determined by the subgoals available to the adversary's
PREVENT_INFORMATION_COLLECTION countergoal.

The third problem 1is one which we have not yet addressed. At
present, the only mechanism that we envision is one that is similar g§
the contingency goal tree generation process, where instead of having

alternative countergoals, alternative possible world states are

38

considered. A contingency plan for each one would be developed.

Although this approach is theoretically feasible, in most cases it
will probably 1lead to a combinatorial explosion in the search space.

Consequently, we need to develop a more elegant approach.

3.2.7 Dealing with Time in Adversarial Planning

As discussed in Section 2.1, planning systems that explicitly
deal with time are rare. There exist very few if any truly
time-dependent models for planning. In the case of adversarial
planning, the problem is the same. There do not exist at present what
appear to be good models or techniques for incorporating
time-dependent outcomes into the adversarial planning process. In the
Cp/x framework, the best that can be done at the moment, is to attach
a time-required-to-generate-outcomes to the world update functions.
What that means 1is that when there exists a local conflict, the
utility for updating the world state can also have incorporated within
it an estimate as to the time required to resolve that conflict.
Given this approach, CP/x can estimate time required to execute one
versus another contingency plan. This type of time-dependent world
update 1is reasonable in domains where all actions occur in a linear
sequence. However, for parallel planning, which will have
parallel-with-respect-to-time actions, it becomes significantly more
difficult to use this approach.

3.2.8 Distributed Execution in Adversarial Planning

As discussed in Section 2.1.8, it is sometimes useful in
parallel planning to have separate execution modules to execute the
actions in each of the parallel branches 1in a plan. Distributed

execution modules need to be able to communicate and coordinate. 1In

39

adversarial domains, however, an intelligent adversary will attempt to
disrupt this communication and/or coordination. 1In order to handle
that kind of problem within the CP/x framework, we need to incorporate
a MAINTAIN_COMMUNICATION and a MAINTAIN_COORDINATION goal and assume
that the adversary has a countergoal of DISRUPT_COMMUNICATION and/or
DISRUPT COORDINATION. Each of these maintain and disrupt goals then
will have subgoals attached to them that correspond to explicit
techniques for obtaining these goals.

3.2.9 Interactive Adversarial Planning

There are a number of ways that an adversarial plaﬁning system
such as CP/x can be adapted to cooperative man/machine planning. One
approach that 1is consistent with some existing interactive action
planners, is to modify the goal objects to allow user inputs in the
subgoal selection process. The second approach 1is to 1let the
adversarial planner CP/x play the role of a "devil's advocate",
pointing out specific counterplans available to an adversary.
Finally, a third, theoretical very interesting approach is one that
treats cooperative planning against an adversary as a multi-agent
planning problem. In this case, CP/x must explicitly reason about
both the adversary's competitive agent's goals and the user's (a
cooperative agent) goals. This 1last approach remains somewhat
speculative and we are not sure how to implement it.

3.3.10 Extending CP/x to Multi-Agent Environments

CP/x reasons about a competitive agent's goals and plans
through a straightforward process of goal pairing. Namely that evety
time a subgoal is proposed and added to a goal tree, the adversary's

assumed countergoal is immediately generated and also added to the

40

goal tree. Consequently, wherever CP/x needs to take into account the
adversary actions, a complete goal tree representation of the
adversary's assumed perspective is also available, leading to
immediate selection of possible adversary actions.

Extending this two-agent goal pairing process to a more
general multi-agent goal matching process is straightforward. To do
this requires primarily that

° Cp/x itself be generalized to accept as input the

top-level goals of any number of agents, and

° The 'countergoal' selection procedures in the goal
definitions needs to be generalized to generate
other goals for all agents, both competitive and

cooperative,.

Although a generalized Cp/x provides a framework for
processing the goals of any number of cooperative or competitive
agents, it does not necessarily imply that the generalied CP/x will be
an effective planner in this type of environment. The quality of the
planning process still depends on the goal processing procedures
defined in the goal objects. Specific techniques for selecting
matching goals and subgoals, that are appropriate to the multi-agent

environment, need to be embedded in the goal objects.

e
P

41

4.0 SUMMARY

According to the original propnsal, the goal of the first year of

this effort was to achieve the following milestones:

l. Implement a central planning control system for adversarial
planning that includes modules for controling goal genera-
tion, updating of hypothetical world states, determining
affected goals in a previsouly generated goal tree, and
replanning/backup procedures.

2. Implement a rudimentary version of the CP/x environment
that includes a general ability to define and develop
knowledge bases that CP/x can access.

3. Apply CP/x to at least one problem domain, specifically a

simple board game simulating a war environment.

In general, these milestones have been met, although the board
game selected for testing CP/l1.6 was Othello and not a war game. In
fact, selection of an appropriate problem domain turned out to be one
of the most difficult problems facing the first year effort. This
difficulty occurred because of an inherent conflict between the need
for a domain rich enough to effectively test CP/1.0 capabilities and
the need to minimize knowledge engineering time so that we could focus
our efforts on developing CP/1.8 itself.

Othello 1is an alternating-play game that does not require a large
knowledge base of goals for a reasonable level of play, but has never
been prograamed with knowledge-based search procedures. Consequentlyi

it provided a good domain for evaluating CP/1.8's search behavior.

Most interesting war games, on the other hand, were too complex to

42

have been a suitable year one test domain. They would have required
that a substantial amount of time be dedicated to generating domain
specific utilities and knowledge engineering.

Regarding future work, the focus for the next two years will be
on systematically implementing and testing the various advanced
planning techniques discussed in Section 3.2. The immediate focus
will be on:

e testing the representative search and metaplanning

capabilities that are embedded in CP/1.0, but could
not be satisfactorily tested in the domain of Othello;

e implementing a facility for planning in domains that

involve uncertainty, information goals, and the use of
deception tactics; and

e implementing an automated hierarchical planning capability.

43

REFERENCES

Berliner, H., Chess as problem solving: The development of a tactics
analyzer, Unpublished doctoral thesis, Carnegie-Mellon
University, 1974.

Fikes, R.E., Hart, P.E., and Nilsson, N.J., "Learning and Executing
Generalized Robot Plans," aArtificial Intelligence (3),
251-288.

Friedland, P.E., 1979. Knowledge-based experiment design in

molecular genetics. Rep. No. 79-771, Computer Science Dept.,
Stanford University (Doctoral dissertation.)

Hayes, P.J., "A Representation for Robot Plans," Proceedings of the
Fourth International Joint Conference on Artificial
Intelligenct," Tbilisi USSR, 1975, 181.

Hayes-Roth, B. 1980#. Human planning processes. Rep. No. R-2670-ONR,
Rand Corp., Santa Monica, California.

Hendrix, G.G., "Modeling Simultaneous Actions and Continuous
Processes, Artificial Intelligence, 1973, (4), 145-189.

Lehner, P.E., "“Strategic Planning in Go," To appear in book on Al
Game Playing, ed. Max Bramer, England: Ellis Horwood Ltd., 1982.

Lehner, P.E. and Patterson, J.F., "Decision Analysis and Artificial
Intelligence: Applications to Senior Battle Staff Decisions,"
Conference Report, Decisions and Designs, Inc., 1981.

Pitrat, J.A., "A chess combination program which uses plans,"
Artificial Intelligence, 1977, (8), 275-321.

Reitman, W. and Wilcox, B., "Modeling tactical analysis and problem
solving in Go," Proceeding of the Tenth Annual Pittsburgh
Conference on Modeling and Simulation, 1979, 2133, 2148.

Sacerdoti, E.D., "Planning in a Hierarchy of Abstraction Spaces,"
Artificial Intelligence, 1974, (5), 115-135.

Sacerdoti, E.D., "Plan Generation and Execution for Robotics,"
Stanford Research Institute Technical Note 209, 1988.

Slate, D. and Atkins, L., "CHESS 4.5 - The Northwestern University
chess program,"” In Chess Skill in Man and Machine, Frey, P.
(ed.), Springer-vVerlag, 1977.

smith, R.G., "A Framework for Distributed Problem Solving,"
Proceedings of the Sixth International Joint Conference on
Artificial Intelligence, Tokyo, Japan, 1979.

er

44

stefik, M., "Planning with Constraints (MOLGEN: Part 1",)
Artificial Intelligence, Vol. 16, No. 2, pp. 111-39,
1981a.

Stefik, M., "pPlanning and Meta-Planning (MOLGEN: Part 2",)
Artificial Intelligence, Vol. 16, No. 2, pp. 141-169,
1981lb. .

Tate, A. "Generating Project Networks," Proceedings of the Fifth
International Joint Conference on Artificial Intelligence,
Cambridge, Mass., 1977, 888-893.

vere, S.A., "Planning in time: Windows and Durations for Activities
and Goals," Jet Propulsion Laboratory Report, Pasadena,

California, 1981.

Wilensky, R., "PAM," In 1Inside Computer Understanding , R.C. Schank
& C.K. Riesbeck (Eds.), Erlbaum, Hillsdale, N.J., 1981.

Wilkins, D., Using patterns and plans to solve problems and control
search. Unpublished doctoral thesis, Stanford University,
1979.

Wilkins, D. and Robinson, A.E., "An Iterative Planning System,"
Stanford Reserch Institute Technical Note 245, 1981.

T

45

e

APPENDIX A

AN EXAMPLE OF CP/1.8 TACTICAL SEARCH IN OTHELLO

e

A.9 AN EXAMPLE OF CP/l1.0 TACTICAL SEARCH IN OTHELLO

For the board position shown in Figure A-1, CP/l.0 generated the
move tree shown in Figure A-2. Figures A-3 to A-7 show the
contingency goal trees associated with each branch of this move tree.
The specific goal objects that generated this search are shown in

Appendix B.

[A]
r

o
o0

0]0/0|0|0 |0
0000

O
© 00000
000000
©

(0 7) = UPPER RIGHT CORNER (7 0) = LOWER LEFT CORNER

FIGURE A-~1l

INITIAL POSITION IN CP/1.0 OTHELLO SEARCH EXAMPLE

(1 5) —> (2 6)

(57) ——» (6 7)
INITIAL

POSITION
(3) —— (5 0)

MOVE

WHITE BLACK

WHITE

— FAILED
POSITION

———» FAILFD
POSI ‘ION

— FAILED
POSITION

FIGURE A-2

White Moves First

BLACK

(7 3) — (7 4) ——» (7 1) — FAILED

\ NO OTHER

POSITION

MOVE TREE FOR CP/1.0 OTHELLO SEARCH EXAMPLE

e

IMRPOVE_POSITION: PREVENT (IMPROVE_POSITION)

IMP_A_CNR:STOP_A_CNR

IMP_CNR(8 7) :STOP_CNR(@ 7)

CNTRL_1_2 AWAY(8 7):STOP_1_2 AWAY(8 7)

NOT_NRCNR_PLAY_SAFE (2 5) :NOT_NRCNR_PLAY_SAFE (2 5)

FAILED FOR
WHITE

NOT_NRCNR_TURN_OVER (2 5) :NOT_NRCNR_TURN OVER(2 5)

PLAY (1 5):NIL NIL:PLAY (2 6)

FIGURE A-3

FIRST CONTINGENCY GOAL TREE IN SEARCH

rr

e

IMPROVQ_POSITION:PREVENT(IMPROVE_POSITION)

IMP_A_CNR:STOP_A_CNR +
IMP_CNR(7 7):STOP_CNR(7 7)

CTRL_1_2_AWAY(7 7):STOP_1_2_AWAY (7 7)

PLAY SAFE(5 7):PLAY_SAFE(S 7)

PLAY (5 7) :NIL NIL:TURNOVER (5 7)

NIL:PLAY(6 7)

(+ indicates goal-pair kept from previous tree)

FIGURE A-4

SECOND CONTINGENCY GOAL TREE IN SEARCH

+

FAILED FOR
WHITE

IMPROVE POSITION:PREVENT (IMPROVE POSITION) +

PLAY_SIDE:STOP_PLAY_SIDE

PLAY SAFE(3 0):PLAY SAFE(3 @)

WHITE

PLAY (3 0) :NIL NIL:TURNOVER(3 @)

NIL:PLAY (5 @)

(+ indicates goal-pair kept from previous tree)

FIGURE A-5

THIRD CONTINGENCY GOAL TREE IN SEARCH

[

IMPROVE_POSITION:PREVENT (IMPROVE_POSITION) +

PLAY_SIDE:STOP_PLAY_SIDE +

PLAY_SAFE(7 3):PLAY_ SAFE(7 3)

. FAILED FOR
BLACK

PLAY (7 3):NIL NIL:TURNOVER(7 3) TURNOVER(7 3):NIL

NIL:PLAY (7 4) PLAY (7 1):NIL

(+ indicates goal-pair kept from previous tree)

FIGURE A-6

FOURTH CONTINGENCY GOAL TREE GENERATED DURING SEAKCH

IMPROVE_POSITION:PREVENT(IMPROVE_POSITION)

PLAY_SIDE:STOP_PLAY_SIDE +

PLAY_SAFE(7 3):PLAY_SAFE(7 3) +

FAILED FOR
BLACK

PLAY(7 3):NIL + NIL:AND[TURN_OVER(7 3),NOT(PLAY 7 4)])

(+ indicates goal-pair kept from previous tree)

FIGURE A-7

FIFTH CONTINGENCY GOAL TREE IN SEARCH

e

O

APPENDIX B

SOURCE LISTINGS FOR CP/1.06 AND OTHELLO

B.2 SOURCE LISTINGS FOR CP/l1.0 AND OTHELLO

The source 1listing for CP/1.8, the wutilities for playing
othello, and the Othello goal objects are provided below. Since
cp/1.0 is an intermediate product that will be significantly
enhanced and modified during the next two years of this program, and
Othello is primarily a test domain for debugging the CP/1.0
software, no attempt has been made to provide extensive internal
commenting of the code.

Instructions for playing Othello, using CP/1.06 are found in the

Intro.0Othello file on the magnetic tape delivered with this report.

CONTINGENCY PLANNER/VERSION 1.0 B-2

Nov 29 1351 1984 cr1.0 Page |

{del search
(nlaabda (rarass)
(rrog (selist Srejs Lree environsent Esorf nessflag)
(cond ({null (cedr Pares})
{seta tree (asketree (tursualrair))))
(t
(sete tree (eval (cadr rarans))i))
(sele Breds (list (list (denmswm) (senswali))
retlry
{seta tree (pinback tree))
{cond ((cer (lastrair tree))
(cond {(sideffects pselist)
{s0 retry)))))
(svitchsides ‘go¢l)
(return tree))))

{def ainback
(lasbda (tree)
(rros (neviree environment)
looe
(seta $sorf nil)
(seta nevlree (far_ss_rossible treei)
(comd ((end (or (Il (cur (lasieair treel);
(ea tsorf ‘failed))
(can_trim newirer))
{seta reds (cddr Sreds))
(sete tree (iria newiree))
{switchsides)
(g0 loor))
{(and (ea 3sorf ‘succeeded)
(cari_trind newtree})
{seta ¥rejs (cdr $reds))
{seta tree (irinl neviree})
{20 loor)))
(relurn neviree))))

(def far_as_rossible
{1asbda (tree)
(cey environsent bosrd)
(rrod (new_tree)
{switchsides ‘countergoal)
(rlavout tree)
{rrod nil
loor
(switchsides)
{seta nev.tree (cosrlesteove tree))
{codd (new_tree
{seta Lree nev.tree)))
(and {or (ea Ssorf ‘succeeded)
{nll new_tree))
(retum))
(g0 loor))
(return tree))))

R

{def coarlesiscve
(laabda (tree)

er

Nov 29 13:51 1984 crl.0 Page 2 B-3

(rrog nil
loor
{or {continve_rlay)
{return {ree))
(seta tree (iserrove.tvee dree))
{eval (deli (cur (lastrair tree))
(auote action)))
(d0 loor))))

(def imrrove_iree
(lasbda (tree) .
{cond {{and (dreaterr (lensth tree) 2)
{cond ({all_or.nil (butlast tree)
(listtree
(isrrove_tree (lastn tree)))))
(t
{rearror (currejs Breds) (cur (lastrair tree)))
nil))))
((rll 3sorf)
{exrand_tree tree)})))

(def exrand.tree
(laabda (tree)
{cond ({and (deti (cur (tor tree)) (auote action))
(eval (geli (cur (tor tree)) ’feasible))’
{seta tsorf nil)
(seta trejs {cons (list (sensua) (denswa)) %rejs))
tree)
(t
{cond ((eval (seti (cur (tor tree})) "succeeded))
{seta $sorf ‘succeeded)
tree)
{(eval (deti (cur (tor tree)) "lailed))
(seta 3sorf ‘lailed)
nil)
(t
(seta thave (21l or_nil tree
(select_sub (tor Lree))))
(cond (Shave
(arrend (list ‘tree
(list (car (tor tree))
(lastn shave)))
(butlast (cddr thave) HININ))

(def select_sub
(lasbda (rarse)
B {rrog (current curlist res)
(sete curlist (set_sub (eval (seli (cur paras) ‘subdosl))
(det (curreds Sreds) (cur raras))))
(seta curlist (subset ‘(lasbda(k)
(evsi(geti k ‘feasille)))
curlist))
love
(sela current (car curlist))
{seta curlist (cdr curlist))
{putrror (curress treis)

e

Nov 29 13:51 1984 crl.0 Pase 3

(cons current (det {(curress Sreds) (cur raras)))
{cur paras))
{cond {(and curreat
{null (sete res
{exrand_tree
(askelree (counterrair current
. {count rarss}))))
(g0 loor)))
{return {cond (res
(list res nil))
t
(list res))))}))

(def all_or.nil
{lasbda (listl list2)
(cond {(and (and listl list2)
(not (eeual list2 (evote (nil)))))
{arrend list] list2)))))

{def azketree
{lexrr (nrars)
{list ‘tree (list (arg 1)
(cond ((dreaters nrars 1)
{ard 2)))))))

(def lasteair
(lasbda {tree)
{cond ((eaual {car tree) (euote tree))
(lasteair (lasin tree)))
(t
tree))))

(def butlast
(lasbda (list)
(cond ({or (null list)
{ea {lensth list) 1))
nil}
(t
{cons (car list)
{butlast (cdr list)))))))

{def sideffects

{lasbda (rselist)
(seta xxxx nil)
(princ "searching for side effects®)
{tareri)
{subset {ouote (lasbda (k)

(rossible (ashetree (countersair k nil)))))
rselist)))

(def rossible
{laadda (tree)
{rrod {new.tree)
(svilchsides ‘goal)
{rrod nil
loos

rr

Nov 29 13:51 1984 crl.0 Pase 4 B-5

{suilchsides)
(seta new.tree (conrleataove tree))
(cond (new.tree
{seta tree neu_tree)))
{and (ull nev.iree)

{retum))
{(%v loor))
(cond (lea 8side ‘d0al)

(return tree))
(t

nil))))

(def svitchsides
(lexer (near)

{cond ((or{and(ea near 1)
(va (are 1) ‘g021))
{and(not(ee near 1))
{eaus] $side ‘countersosli;)
(Gef cur
{lasbda (rarae)
(caar raras}))
(def count
(laabda (racrae)
(cadar »#aran}))
{def curreds
(laabda (list)
{caar list)))

(def addreds
{laabda (reJect)
(sete Sreds
(list (list (cons reJject
{caar freds))

(cadar Brejs))
{cadr $reJs)))))
(def counterrair
{l1aabda (subgoal crarent)
(list subduel
(countergoal subdosl crarent)i);
{seta curside (euote while))
{seta $side 's03l))
i
(defl cur
(1aabds (rarae)
(cadar rarma))}
{def count
(lasbds (raras)
{casr rarss)))
(def curreds
{lasbda (list)
(cadar 1ist)))
(def addreis
(lsabda (reJect)
(sele SreJs
(list (list (caar Yress)
(cons redect
{cader Fren)))

v e

Nov 29 13:51 1984 c»r1.0 Pase 5 B-6

(cadr $ress)))))
(def counterrair
(laabdas (subdgoa] crarent)
(list (countersosl subsoal crarent)
subgoal)))
(sete curside (euole black))
(sete 8side ‘counterdosl)))))

(def countergoal
{lasbda (sub crarent)
(car {int (eval (geti sub ‘countersoal))
(eval (geti crarent “sub.not_on._sove}}}}})

(def int
(lasbda (s1 s2)
(cond ({and si s2)
(arrly ‘arrend (msrcar ‘(lasbda (k)
{listcar (sena k s1)))
$2)))
{s1}
(s2))))

(def listcar
(lasbda (list)
(cond ({null list)
nil)
«“
(list {car 1ist))))))

(def askesoasl
{eacro (call)
{rutrror {cadr call) 't "feassible)
(cond {(not (wema (codr call) tesesoals))
(seta reragoals (cons (cadr call) sereduals))))
(rrod (goalnase cur list)
(seta soalnase (cadr call) cur (caddr call) list {cdddr call))
{rrog nil
loor
{or cur (return))
(ruton goalnsae cur)
(seta cur (car list))
(sela list (cdr list))
(g0 loor))
(return nil))
(list (ouote rutrror)
. {list (suote ovole)
= {cadr call))
{euote (auote soal))
{auote (suole tyre)))))

{def ruton
{sscro (call)
{list (evole puterror)
(cadr call)
(list (euote suote)
{cadr (eval (caddr call))))

Nov 29 1351 1984 c#1.0 Pase § B-7

(list (auote auote)
{car (eval (caddr call})))))

. (def seti

{1aabda (ate rros)
{cond ((null ata)
nil)
141
{cond ((and {not (aema ata seradoals))
{not (wewa atls tesrsoals)))
{instan ats)))
(set ats rror)))))

(def gener
{1aabda (ata)
(cond {(get ata (aucle sener)))
(t
(suteror ata
{isplode {toslash (exrlode ate)})
(euole gerer)}))))

(def srect
(lasbda (ata)
(cond ((set ata (auote srecif)))
(t
{rutrror ata
(iarlode (faklst (froaslash (exelode ale}))?
{auole seucif)i))))

(def eakefora
(s2cro (call)
{list (avate putrros)

(list (euole auote)
{cadr call))

{list (euole ouote)
{cddr call))

{suote {(puole fora)})))

{def instan
(sacro (call)

tand (null (get {dener (evel (cadr call))) ‘fora))

{seinc ‘undefined fore®))
(seta Leardoals

(cons (eval (cadr call))

tearsoals))
{aprend (1ist (ouote askedoal)
{eval {cadr calD)))
(substit (specf (eval (cadr call)))
{gel (dener (eval (cadr call)))
(auole fore))))))

{def Srer
{lasbds (ites 1 tok)
(asrcar {(auole (lasbds (k)
{cond ((eagual k tok)
iten)

L]

Nov 27 13:51 1984 cr1.0 Fage 8

{cond ({and k
{car k)
{seta tews
(isrlode (arpend (exelode den)
{8unsklst (exrlode k)}}))

{rutrror teap gen (wuole gener))

(suteror tesr k (auote srecif))

(retyrn tess))

41

{return nil})))))

(def firstrair
(1aabda (tree)
{cond {(not (eaual (car tree)
(ouote tree})))
((caddr tree)
(tirstrzir (caddr tree)))
(t
{tor tree)))))

(def listtree
(laabda {(tree)
{cond (tree
{list Lree)))))

(def tur
(lasbda (tree)
{cadr tree)))

{def newoul
(lasbda (tree)
{princ *achieve ')
{nevwoutl2 tree)))

(def newoul?
{1asbda (tree)

{princ {cur (tor tree)))

{cond {{count (Lor Lree))
{princ * without a8l wing *)
(rrinc (count (tor tree)))))

(terrri)

(cond ((sreaters (lendth tree) 2)
(princ by)
{newout? (lastn treei)})))

(def sintlethread
{laadda (tree)
(and (equal (car tree)
{euotle {ree))
{or (eaual (lensth Lree) 2)
(and (eaual (lensth tree) J)
(singlethread (lastn tree)))))))
{def rea.i_branch

(laabda (tree)
(cond ((or (ea (lendlh Lree) 2)
(il Lree))

Nov 29 13151 1984 cr1.0 Page 9

nil)
((not (singlethread (lastn tree)))
(arrend (butlast tree)
(list {res_i_branch (lastn tree)))))

L
{butlest tree)))))
(def can_tris
(lsabda (tree)
{rrod nil
looe
{cond ((and (dead (lasteair treei)
tree)
(seta tree (rea_1_branch Lree))
(40 lour))))
{cond {(or (sindlethread Lree)
(null tree))
nil)
{{singlethread {lastn tree))
(cantrinl (butlast tree)))
¢4
{can_tria (lastn tree))))))
(def tria
(1aabda (tree)
(rro¢ nil
loor
{cond {{and (dead (lasteair tree))

tree)
{seta tree {rea_1_branch tree))
{40 lovr))))
{cond ({not (singlethread (lastn tree)))
(arrend (butlast tree)
(list (teia (lastn tree)))))

((null tree)
nil)
(t
{trisl (butlast tree))))))

(def can_trinl
{1>abda (tree)
(rrog nil
loor
{cond {(and tree
(dead (lasteair tree)))
(selu tree (rea_i_branch (ree))
(g0 loor))))
(areaters {lensth tree) 2)))

(def trint
(lsabds (tree)
(rrod nil
looe
(cond ((and (dead (lastrair Lree))
tree)

{seta tree (rea_l_branch tree))
(g0 loor))))

B-9

Nov 29 13:51 1984 c¢*1.0 Pase 10 B-10

(cond {(and (ea (lendth tree) 3)
(ea (lendth (caddr Lree)) 2)
{cond {(nul]l (caaadadde Leee))
{rearror (curreds SreJds) (cadaadr iree))
(asketree (list (casadr tree)
{g0alinst ‘andnot
{list (cadaadr tree)
{cadeedaddr tree))))))
(“t
(rearror (curreds Rreds) (caaadr tree))
(neketree (list (goelinst ‘andiwt
{list (ceaaadr tree)
(caaadaddr Lree})?
(cadazdr tree))))))
((ea (length tree) 2)
‘(tree {(nil nil) nil)))
{t
(arrend (butlast tree)
(list (trisl (lastn tree)))N))))

(def dead
{1asbda (rair)
{not (or (deti (cur sair) “action)
{geti (rount pair) ‘aclion)))))
(def plavout
(lasbda (Lree)
(cond ((dreaters (lensth tree) 2)
(nart (auote rlawout)
(cdde tree)))
((lesse (lendth tree) 3)
(cond {(rull {cadar (Lor tree)))
(eval (seti (caar (lo» tree)) ‘action))
(suitchsides ‘countersosl))
((rwll (caar (lor tree))
(eval (seti (cadar (toe tree)) “aclion))
(switchsides ‘$03l))))
(t
(rlavout (caddr tree))
(rlayout (cdddr tree)})}))
(def rlavboard
(lasbda (tree)
(cond ((ea (lensth tree) 2)
(cund ((geti (caaadr tree) ‘urdateactium)
{eva] (deti (caaadr Lree) ‘urdatesction))
' 1)
(t
(sose ‘lavboasd {cddr tree))))))
(def Saklst

(lasbda (list)
(arrend (cons ‘1(1 (asrcar (euate (laabde (k)
{cond (¢ eeual k “1M) “i D)
(t
ki)
lisl))

(LN

Nov 29 13:51 1984 crl.0 Pase 11

{evote (1))

(def Sunsklst
{lasbda (list)
(narcar (ouote (lasbda (k)
{cond ((mema k {auote (1{i 1}1)})
‘i)
{{eaual ‘1 | k)
1

(L
(30}
list)))
(def substit
{laabda (list fors)
(rrog (tear)
{seta tear (cdr fore))
(sarc (auote (laabda (lic tat)
{seta lesr
{8rer Lic tesr tach))
list
{car fora))
(return tesr)i))
(def subset

(lasbda (funct list)
(do ({cur (car list){car 1list))
{s))
({mll list)
s)
(sete list (cdr list))
{cond ({arrly funct (list cur))
(sela s (aerendl s cur)))))))

(def every
(lasbda (funct list)
(do ({cur (car list) (car list)))
{{or {null list)
(not (eval (list funct ‘cur))))
{cond {{null list)
133}
(sete list (cdr list)))))

(def some
{laabda {funct list)
(do ({cur [car list) (car list)))
{((or (nll list)
(eval (list funct 'cur)))
{cond (list
list))
(seta list (cdr lisi)))))

(def set._sud
(lsabda (sell set2)
(narc ‘(lasbda (k)
{seta setl (allbut k seil)))

B-11

Nov 29 13151 1984 cr1.0 Pase 12 B-12

set2)
setl))

. (def ness

(lasbda (1ist)
{cond (Cend (aull nessflas)
{oena {cur (caadar (last tree))) list))
(sete nessflas t))
(t
{seta nesstlag nil)))))

{askefore or (Jo3l1 $0212)
(subsoal ‘(go0sll $02]2))
(syb_not_on_aove ‘(nil))
(counterdoal (list (soalinsl ‘and (list (car (geli goall ‘cuuntersudl))
(var (geli %0412 ‘countersoal)ii}i))

{(nakefors and (g0a3li %0212)

(subdoal ‘(g03ll €0312))

{sub_not_on_sove ‘{s02ll 20al2))

(counterdoal (list (goalinst ‘or (list (car (geti doall ‘cuuntersusi))

(car (dgeli S0412 ‘countergoal))))i))

{nakefore andnot (d0all g0412)

(subgoal (allbut ‘<0312 (eval {(deti ‘goall ’subsoal))))

(sub_not_on_move (eval (geli ‘d0all ‘sub_not.on.sove)})

(counterdgoal (eval (geti ’‘doall ‘countergosi)))

(feasible (evel (geti ‘goall ‘feasible}))

(succeeded {eval (deti ‘s0all ‘succeeded)))

(failed (eva] (deti ’‘doel} ‘failed’)))

(askefora avoid (g0al)
{succeeded (eval {geli 'soal ’succeeded)))
(failed (eval (deli ‘gual ‘failed))))

OTHELLO PROGRAM B-13

Nov 29 13:53 1984 oth_rrodrae.] Pade |

(def othello
{lexrr (Parae)
{array board t 8 B)
(sete xxxx nil)
(init)
{cond ({or (ea raras 0)
(null (are 1Y)
(readstart '/u/147215a/workindcrx/init))
(
{readstart (ars 1))})
{cond {{or (lesse paran 2)
{null (ard 2)))
{load ‘/u/14721Je/worhindcrx/othellodoals))
it
{load (ard 2)))
(do ((ac 1 (11 o))
(av))
({eaual oc 40))
{disrlay)
{aove {readmove} ‘black)
{disrlay)
{princ ‘one sosent'){terrri)
(sela tree (search boerd))
{rlasboard tree))))

(def readaove
(1aabda ()
(rrod (tesr)
loor
{princ *black -- enter wour eove °)
(sete tesr (reed))
{cond ({ea tear 'f)
(newout tree)
{do loor)}
({ea tesr 'b)
{disrlay)
{g0 looe)}
{(ee Lear ‘'Y)
{vp Lree)
(g0 loor))
({ea Lenr 'S)
(princ *nase of filz ! %)
{savedawe (ratus))
(40 loor))
((and tear
{or (aton lear)
{not (ea {lendth tese) 2))
{nut (velidmove tess ‘Dlack))
{null tesr)))
(rrinc *invalid move — Lry 292in’)
(terrri)
(g0 loor)))
{return tesr))))

(def nove
{lasbda (seace color)

Nov 29 13:33 1984 oth_rrosrae.] Pase 2 B-14

{cond (srace
{arrly ‘board {cons color space))
"aaee ‘(lasbda (k)
{and (flirsble srace (sublisl k seace) vuluri
(rlir spave (sublist k seace) coloryi)
(ediacent srace})))))

(def flir
(lasbda (space dir color)
(arrly ‘board {cons color (addlist seace dir)))
{cond ((eaual (arply ‘buard (addlist (eddlist seace dir) dir))
{os color))
{Plir (addlist seace dir) dir color)))))

(def validaove
(lasbda (seace color)
(some ‘(lasbda (k)
(flirable srace (sublist k srace) culor))
(adJiavent srace))))

def flirable
(lasbda (seace dir color)
{cond ({and {valide (addlist seace dir))
{eoua]l {errly ‘toard (addlisl srace dir))
{or color)))
(flirable2 srace dir color)))))

idef flirable?
{laabda (seace dir color)
(and (valide (addlist srace dir))
(cond ({equal (arrly ‘board (addlist srave dir))
{or color})
{flirable2 (addlist space dir) dir colori)
((eaual (arrly ‘buard (addlisi srace dir))
color)
(addlist seace dir)));))
(def disrlay
(lasbda ()
(do (i 0 (1% i)))
{(greaterr i 7))
{(do ({i 0 (13 W)
{(dgreaters J 7))

{diselayl i .

{princ ¢ "))
{rrinc i}
: (terrri)
N (terreri))

{do ((J O (13 3)))
((greaterr J 7))
{rrinc J)

{rrinc *)

(teerri)))

(def diselavl
(laabda (i J)

Nov 29 13153 1984 oth_rrogrie.] Fage 3 B-15

{cond ((null (board i J))
{Prine *eveee'))
(t
(princ {board i J)})))))

(def init
{1sadda ()
{sete $side ’'counlerdoal)
{sete rselist nil)
(sets teargosls nil)
(seta rerasoals nil)))

{def readstart
(lasbda (filenase)
{seta stlinfile Pilenase))
(do ((i 0 (1% i)))
{{greaterr i 7))
(do ((J 0 (1% @)))
{(dreaterr 4 7))
{bosrd (read L) i)
{close #l)))

(def savedane
(1asbda (filenase)
(seta rtloutfile filenase))
(do ({i 0 (1+ D)D)
((greaters { 7))
{do ({5 O (1+ B)))
((dreaterr J 7))
(rrint (board i J) #l)
(terrri ob)))
(close »t)))

(def validr
(1sabda (subs)
(and (lesse (car subs) B)
(sreaterr (cor subs) -1)
{lesse (cadr subs) B)
(sresterr (cadr subs) -1))))

(def or
(l1aabda (color)
{cond ({esual color ‘white)
‘black)
(“
'white))

(def addlist
(lasbds (11 12)
(sarcar ‘4 11 12)))

(def sublist
(lsabda (11 12)
{aarcer ‘- 11 12)))

(def odjacent

Nov 29 1353 1984 oth.rrodran.l Fade 4 B-16

{1ssbda (sou)
(subset ‘valide (sarcar ‘{lasbds (k)
{addlist k sau))
O (11D 01 (-114) (18 (-1 -1
(0-1) 1 -1303))

{def two_avay
(lasbda (sau)
(subset ‘valide (marcar ‘(laabda (k)
{addlist k say))
W20 2202 (=22 {-26) (-2 -2)
0 -2) (2 -22)))
(def cry
{nlaabda (raraas)
{Sarray (car paraes) ¢ 8 8)
(do ((1 0 (1# i)))
((dreaters i 7))
(v ((J 0 (1% J)))
{(dreaterr J 7))
{arrly {car maraes)
(list (arrly {cadr sareas) (lisl i J4)) i IIN))

(def continve_rlay
(lasbda ()
(seta xox {not xxxx))))

(def act
{lasbda (srace color)
(arrly ‘environeent {(cons color space))
(s3rc ‘(laabda (k)
{and {aflirable srace (sublist & seave) culur)
(aflir seace {(sublist k srace} voior)})
(adiacent srace))))

(det aflir
{l2ebda (srace dir color)
(arrly ‘environment (cons color (addlist seace dir)))
(cond ((eaual (arrly ‘evircment (wddlist (addlist seece dir) dir))
(or color))
(aflir (addlist seace dir) dir color)))))

(def aflirable
(lasdda (srace dir color)
{cond ((and (valide (addlist seace dir))
(ewusl (arrly ‘environsen! (addlist seace dir))
{or color)))
: {aflirsble2 seace dir color}))))

{def sflirable2
(lasbds (seace dir color)
{and (valide (sJdlist seace dir))
{cond ({eaual (arrly ‘environsent {addlist srece dir))

{or color))

(aflirable? (addlist seace dir) dir color))

(teaual (arrly ‘envirormenl (eddlist seace dir))
color)

Nov 29 13:53 1984 oth_rrogran,l Pade 5

(addlist srace die))))))

(def adisrlay
(laabda ()
(do ((i 0 {14 D))
((sreaterr i 7))
{do ({4 0 {3+)))
((sreaterr J 7))
(adiselayl i J)
{princ * "))
(rprinc 1)
(tereri)
{terrri))
{do (LJ O (1% J)))
({sreaterr J 7))
{rrinc J)
{(rrinc * '))
(terrri)))

{def adiselavl
(laabda (i J)
(cond ({null (environment i J))
{rrinc ®rrees))
{1
(rrinc {environsent i JH)}))

(def avalideove
(1aabda (seace color)
(sose ‘(lambda (k)
(aflirable ssace {(sublisl k seace) culur))
(adJaceni seacel}i))

B-17

OTHELLO GOAL SPECIFIC UTILITIES B-18

Nov 29 13:49 1984 susl_util.]l Pase 1

“(This file contains all the variable definitions
and othello Tunclions that are exelicilly called
in the othello soal obJects)

(seta midsas "¢ (22) (23) (24) 2 5)
B2THEBH AT
(42) (43 (44) (43
(52533 53859)

(sete sideses ‘((0 2) (0 3) (0 A) (0 D)
20 30 40 (50
(72773 (74 (759
QnNnaANWUN GNN

{sete nearsidesas ‘((1 2) (13) (1 &) (15)
HANDWMDIEGD
(62)(63) (64) (63)
(26 (36){468) (56N

(seta cnrsas ‘((0 0) (O 7Y (70) (7) M)

(seta sidenearcnt ‘((0 1) (1 0) (2 7) (0 &)
(716067 (76))

(seta notsidenearenr '((1 1) (1 68) (4 1) (6 8)))
(seta nearcnr (arpend sidenearcnr notsidenearcnr))
(seta alldirs ‘({1 1) (1 0) (0 1) (1 -1) (=1 1) (-1 -1) (-1 O) (O 1))

‘(returns list of sraces that sre tuo_susy from the sauare unr
and of the sase color as side)
(def na_two.avay
(lasbds (cnr side)
(rrog (1st)
(sarcar ‘(lasbda (k)
{and (eaual (environaent (car k) (caur k))
side)
(cons k 1st)))
(tuo_avay ontr))
(return 1st))))
*{ indicates is there is & legal rlay two.avay froe rosition cnr fur the
2 color defined in side)
{def con_rlav_1_2 svay
(lsebda (cnr side)
{rrod (fleq)
(sarcar '(lasbda (k)
{and (null (eavironeent (cer k) (cadr k}))
(svalideove k side) (sela 'lag 1))
(two_avay cnt))
(return flag))))
‘{ tinds a rlay in the direction of dir that will turn over

-

Nov 29 13349 1984 soal_util.] Page 2

the reice in the souare sos)
{def turn.rlay
(lasbda (ros dir)
(rros (side f1s k1 k2 nevw)
- {sete side (environeent {car eos) {cedr ros)))
(seta new ros)
loor (seta new (list (add (car new) (rvar dir))
{add (cadr new) (cadr dir))))
{cond ((or (> (abs (car new)) 7)
(O (abs (cadr new)) 7)
(< (car new) 0)
(€ (cadr new) 0)) (return nil))
({eeual (environmeni (car new) (cadr new)) side)
(g0 loor))
{{null (environeent {car new) (cadr new)))
(seta kI new))
(L (seta k2 new)))
(and (null 719) (seta fls L) (sete new rus)
{seta dir {list {Limes ~1 (car dir}) {Limes -1 {cadr Gir))))
{s0 loor))
{cond ((or (null k1) (null k2)) (return nil))
(4 (relum k1))

'{ finds all ledal soves that will turn_over the riece in the ros sauare)
(def turn_soves
{iasbda (ros)
(rros (Ist)
{asrcar ‘{laabda (k)
(and (seta k (turn_rlay os k)]
(seta Ist {(cons k }st))))
EDA-DWLO DY
(return 1st))))

‘¢ finds 3 play in direction dir that will allow the siece in povition rusy
to be turned over on the next rlay)
(def set_ur_tum_slay
(laabda (ros dir)
{rrod (side f1g k1 k2 k3 new)
{selo side (environmenil (car ros) (cadr pos)))
(sela new ros)
loor (sete new (list (add (car new) {car dir))
{edd (cadr new) (cadr dir))))
{cond ({or (> (ads (car new)) 7)
> (sds {cadr new)) 7)
(£ (car new) 0)
) {< (cadr new) 0)) (return nil))
2 {{eaual {environment {car hew) {cadr new)) side’
(and (seta k3 (cons new k3)) (g0 loos)))
{{null (enwvirorment {car new) (cadr new)))
(sete ki (cons new ki))))
(and (null f19) (seta flg t) (seta new pus)
(seta dir (list (Limes <1 (car dir)) (Lises -1 (cadr Gir))))
(g0 lour))
{return {errend k3 k1)))))

)

B-19

Nov 29 13149 1984 dgoal_util.] Page 3

(def set_ur_turn_soves
(laabda (ros)
{rros (1st)
- (aarcar ‘(lasbda (k)
(and (seta lst (arrend 1st
{set_ur_turnelay eos &ki))))
A A= oo Ny
(return 1st))))

‘{ set.yr_soves finds the set of all seuares that if side could coutrul tinm
the doal seuare could be uccuried on Lre next tum)
(def set_ur_noves
(lasbda (onr side)
(rrog (1st] 1st2)
{or (sete Istl (turn_targels {one_auay cnr) (or sive))) {return nil))
locr
(seta 1st2 (arrend
{set_ur_turn_rlay (car 1st])
{sub_ros {car 1stl) cnr))
1st2))
(and (seta 1stl (cdr 1st1)) (g0 loor))
(return 15t2))))

‘(ledalsa? tests if diven pos is 3 ledzl one)
(def ledalsa?
(lasbda (k)
(ang (< (car k) 8)
(> (car k) -1)
(< (cadr k) 8)
> {cadr k) -11)))

‘(one_away returns all ledal sauares one rosition away fros
srecified rosition)
(def one_avay
(lasbda (k1)
(rrog (Ist)
(sete Ist
(sarcar
‘(lasbda (k2) (list (add (casr k1) (car k2))
(edd (cadr k1) (cadr k2))))
71 1) (10) (01)(1-1)(-11)(-1-1)(~10) (O-1ID))
(setu 1st (subsetl ’‘ledelsa? lst))
(return Ist))))

‘(turn_targets given a list of board positions returns thuse occuried
. by the srecified side)
{def turn_targets
{lasbda (k1 side)
{rrog (1st)
(aarcar
’{lasdds (k2)
(and {eaua] lenv k2) side) (seto 1st (cons k2 1st))))
k1)
{retum lst))))

‘{ env is 2 single argueaent version of environeent)

Nov 29 13149 1984 €02l util.] Page 4 B-21

{del env
(lasbda (k)
{environsent (car k) (cadr k))))

‘{ this is mol 3 s00d ulility)
{def onr_test
(laabda (k) -
(and (null (env k)) (avalidaove k "dlack))))

’(add_ros inrut = two ewual size list of nuabers
outrut = list of susa of nuabers in the iirul lists)
(def add_ros
{laadbda (k1 k2)
(rrog (Ilsl)
loor
{sete 1st (cons (add (car k1) (car k2)) 1st))
(seta ki (cdr k1))
(sete k2 (cdr k2))
(and k1 (so loor))
{return (reverse 15t)))}))

‘{sub.ros inrul = twyu ewusl size list of ruebers
outsut = list of subtractions of second nual set frue first)
{def sub_r0s
(lasbda (ki k2)
(rrod (lst)
loor
(seta lst (cors (diff (car k1) (car k2)) 1lst))
(seta k1 (cdr k1))
{seta k2 (cdr k2))
(and k1 (g0 loor))
{return {reverse 1st)))))

’{ one_away returns 311 lesel sauares one rusilion away froa
srecified rosition)
(def one.awsy
(Isabda (k1)
{rros (1sb)
{seta Ist
(narcar
‘(lasbda (k2) (list (add (car k1) (car k2))
(add (cadr k1) (cadr k2))))
21ldirs))
{sete 1st (subset ‘ledalsa? 1st))
(return Ist))))

T riecertrn ineut = rosition and a direction
oulrul = ratiern of black vhite erad blank swuares in direction)
{def piece_rtirmn
{lasbda (ros dir)
(rrod (new lst] 1si2 tar)
(sete nev ros)
looe
(seta nev (3dd_ros new dir})
{cond
((lesalsa? new) (seto 1sti (cons {list (env new) new) Isil))

Nov 29 13149 1984 soal_util.l Pase S B-22

(dv loor})}
loor2
{cond
({mwll 1stl) (return 1st2))
{{null 1582) (seta 1s12 (cons {car lsil) lsiZi)}
((eaual (caar lstl) (caar 1s5t2))
(sete tor (cons (cadar lsll) (cdar 1si2)))
(seta tar (cons (caar 1st2) tes))
{seto 1st2 (cons tar (cdr 1s82))))
(t (seta 1st2 (cons {car Istl) lst2))))
(seta Ist1 (cdr 1st1))
{%0 loor2)}})

‘{ turn_to_save inrut = position direction and side to save seuare for
outrut = location of or side reice Lo Le turied over or nil}
(def turn_to_save
(lasbda (ros dir side)
(rrog (Ist)
(cete lst (piece_rirn pos dir))
{cond ((and (eaual (caar 1st) side) (equal (caadr 1st) (ur siveid)
(return {cadadr lsi}))
(t (return nil))))))

‘(turn_all_to_save input = position to srevent other sice frum #lovins in
outeyt = list of sositions of or side pieces to turn over)
(def turn_all_to_save
(lasdda (ros side)
(delete nil
(sarcar
‘{l1asdda (k) (turn_to_save pos k side))
alldirs))))

‘(delete_list deleles elesents of Lhe first list
froa the secord list)
(def delete_list
(laabda (1stl 1st2)
(rrod ()
{ssrcar ‘(lasdda (k)
(seta 1st2 (delete k 1st2)))
1st1)
{return 1st2))))

OTHELLO GOAL ORJECTS B-23

Nov 29 13150 1984 oth_soals.] Page |

(sete pselist (marcar
‘(laabda (k)
(doalinst ‘play k))
{subsel ‘crr_test ({0 0) (0 7) (7 0) (7 H))

(def torgoalreir

{laabda () :
(list ‘inrrove_rosition (d0alinst ‘srevent ‘(iarrove.rusition)))))

‘(this is a generic %02l for the condunction of twu srecific soals)
(aakefors and (d03ll 40a]2)
{subsoal '(doall d0al2))
{sub_not_on_sove ‘(g03l1 90a12))
{counterdoal (list (doalinst ‘or (list (car (deti doall 'cuuntersoal))
(car (deti 0312 “couderdoaliidl}))}

‘(this is a generic gual for the disJunction of lwo srecific goals 7
(nakefors or (<031l d0al2)
(subgoal ’(so0all d0312))
{sub_not_on_sove ‘{nil)}
(countergoal (1ist (doalinst ‘and (list (car (deti doall 'cuunterdeal))
{car (seti 90212 ‘counterdoall)))id)

‘{ tor level s0al for othello rlay)

(nakedoa! iwrrove_rosition
(co.ntergoal (list (doalinst ‘rrevent ‘(iaprove.rosition))))
(subsoal ‘(stck_a.ont isr_a_cnr play._side plavoniddle slay_amy))
{suo_not.on.move ‘(atck_a_cnr isr_a_cne play side plav.aiddle sloy_ai)))

‘{ this is a deneric goal that instanlisles only countersoals)
(aakefors rrevent (dnaee)

{countersoal (list snase))

{subgoal nil))

‘{ othello f0al to rlay in 3 corner)
{sakesoal atck.a_cnr
{countersoal (list ‘dfnd.3.cnr))
(s Y%0a; (marcar ‘(lasdbda (k)
{dualinst ’alck._cne k))
WO W2 (20 (720N
{(sub_not_on_sove (sarcar '(laebda (k)
(g0alinst ‘atck.cnr k))
‘C008) (07) (70 (77M)

’(counter soal to stor atck_a.cnr froe erlaging in 2 corner)
_ {azkesoa! dfnd.s_cnr
{countersoal (list 'atck_a.cnr))
{subsoal nil)
{rb_not_on_sove (aarcar ‘{lasbda (k)
(doalinst 'dfnd_cne k))
‘Lo 0 (07 (20) (2710))

‘{ rositional soal to try to beller position around a corner)
(aakedgoa) isr.a.ont
(countersoal (list 'stor.s.cnr))

Nov 29 13150 1984 oth soals.] Pase 2 B-24

(subsoal {earcar '(lasdda (k)
(doalinst ‘ies_cnr k))
WO WG M
{sub_not_on_nove {(azecar '(lasdda (k)
{s02linst ‘imr_cnr X))
NN N

’{ counter goal Lo stor ier_a.cnr fros detting 2 betler corner sovitliun J
{nskesoal stor.a_cnr
{counterdoal (list ’isr_a_cnr))
(subsoal nil)
{sub_not_on_sove (parcar ‘(lasbds (k)
(goalinst 'stor_cnr k))
WO (70 (71 NN

*(instantiates atch_a.cor edainst a3 srecific corner 7
(askefors atck.cnr (corl cor2)
(countersoal (list (svalinst ‘dfnd_cnr ‘(corf cor2))})
(subdnal (cons (goalinst ‘slay ’‘(cor] cor2))
{narver ‘(laabda (k)
{doalinst ‘rlay_safe k))
(set_ur_soves (list corl cur2) curside))))
(sub_not_on_sove nil)
(failed (eoual (environaent corl cor2) (or curside))))

’{ counter g0al of atck_a.cnr)
(sakefors dfnd_cnr (corl cor2)
(counterdoal (list (doalinst ’alck_cnr ‘(cor! cor2)}))
{subsoal (list (doalinst ‘play "(corl cor2))
{svalinst ’‘stor_rlaw ’{cor! cor2))))
(sub_not_on.sove nil)
(failed (ecual {environsent corl cor2) (or curside))))

‘{ instatniates isr_a_cnr adainst a seecific corner)
{sakefora isr_cnr (cori cor?)
(counterdoal (list (svalinst ‘stor_cnt ‘{corl cor))))
(subsoal (list (goalinst ‘ctrl_1.2_away ‘(corl cor2))))
(sub_not.on_move (list (goalinsl ‘cirl_1_2_eway ‘(cori cor2))))
(feasible (and (null (environeent corl cor2))
)

’{ counter g03] of isr_onr)
(askefors stor_cnr (corl cor2)
(counterdual (list (doslinst ’‘ctrl_enr ‘{corl cor2))))
{subgoal (list (g0alinst ‘rlay ’(corl cor2))
(soalinst ‘stur_1.2_eway ‘(corl cor2))))
{sub_not_on_sove {list (goalinst ’'slay '(cor! cor2))
{goalinst ‘slor_1_2_away ‘(cori cor2))i))

‘{ s08] to rlay on 2 srace that is one ssace reaoved froe 3 corner)
(sakefors ctrl_1_2.sway (cori vor2)
{countersoal (list (goalinst ’‘stoe_1_2.away ‘(cor! cur2))))
(subsoal
{sarcar '{lasbdas (k)
{cond ({(eeaber k sidesas)
(goslinst “»lay_safe b))

Nov 29 13:50 1984 oth_soals.] Pase 3 B-25

(t
(d0alinst ’not_nrenr.play_safe 1))))
(iwo_away ‘(corl cor2))))
{sub_not_on_sove nil))

‘{ counter do0al to ctrl. 1.2 svay)
(nskefora stor_1_2_away (corl cor2)
(counterdoal (list (soalinst ‘ctrl_1.2_away ‘(corl cor2))))
{subgoal nil)
(sub.not_on_aove (sarcar ‘(laabda (k)
{cond ((sesber k sideses)
(gualirst ‘play._safe k))
it
{doalinst ‘not.nrene_rlay_safe k))))
(two_away '(corl cur)))))

‘(go4] to rlay a riece on one of the side sevares)
{nakedoal rlay_side
{counterdoal (list ‘stor_rlav_side))
(subdoal (marcar ‘(laabda (k)
(doalinst ‘»lay_sale k))
sidesus))
(sub_not_on_sove nil))

‘{ counter doal of rlay_side to srevent plavind on the side)
(nakesoal stor_rlav_side
{countergoal (list ‘rlas_side))
{subgoal nil)
{sub_not_on_sove (sarcar ‘(lasbda (k)
{doalinst 'slau_safe k))
sideses)))

‘(soal to rlay in the siddle which is senerally 3 safer nonaddressive rles)
(sskes03l rlay_aiddle
(counterdoal ‘(nil))
(subsoal (marcar ‘(lasbda (k)
(soalinst ‘slay k))
aidses)))

‘(rlav.safe is a 03]l to rlav on 2 sauarer and not be turned over)
{(aakefors rlay_safe (sr] s#2)
{countersoal (list (soalinst ’'mlay_safe ‘(sel $52))))
(subsoal (list (soalinsl ’‘play “(srl g2))
(goalinst ‘turn_over ‘(spl $#2))))
(sub_not_on_sove (list (goalinst ’lurrover ’(s»l $22))))
={fessible (or (and (eausl (environaent sl €82} (o0 curside))
\ (Lurrisoves ‘(srl $p2)))
{and (null (environsent sel $92))
(svalideove "(srl $»2) curside))))
(failed (and (eoual (environaent srl sp2) (or curside))
(null {turn_noves ‘(sel $02))1)))

‘¢ like rlav.safe but excludes rlavs next to s corner position)
(askefors notonrenr_rlay_safe (sel +2)
{counterdoal (list (goalinst ‘not.nrenr_rlav_safe ‘(sel sp2))))

Nov 29 13:50 1984 oth_soals.] Page 4 B-26

(subsoal (list (doalinst ‘rlay '(sel sr2))

(soslinst ‘not.nrenr_turnover ‘(sel sp2))))
{sub_not_on_sove (list (soalinst ‘not.nrcer_turn_over ‘{sel $82))))
{feasible (or (and (eoual (enwirommmrl spi 5#2) {or curside))

(delete_list nearcnr (turn_soves ‘(sel s#2))))
(and (null (environeent s»l s#2))
{avalidaove ‘(sp] $P2) curside))))
(failed (and (eaual (environment s»i s»2) (or curside))
(rull (delete_list nearcnr (turn_soves ‘(sr] &:2))I))

*(sual to rrevent orroneut from play on a seuare on tie next sove J
{azkefors stor_rlay (corl cor2)
{countersoal nil)
{subsoal (sarcar ‘(lasbda (k)
{soalinst ‘turn.over k))
(turn_all. to.seve (list corl cor2) curside)))
{sub.not.on_sove nil))

*{ like turn_overs but does not allow rlay next to corner)
(nzkefora not_nronr_turn_over (sel sp2)

(countersoal (list (doalinst ‘not_nrenr.turn.over ‘(sel s92))))

(subsoal (sarcar ‘(laabds (k)

(d03linst ‘rlay k))
(delete list nesronir {turreoves “(s¢l $#2}}}))
(sub.not_on_sove nil)
(feasible (delete_list nearcnr (turn_soves ‘(sel $p2)))))

7 s03] to lurn.over 3 riete un 4 sauare)
{azkefors turn.over (sl s#2)
(counterdoal ‘(nil))
{subgoal (aaecar ’'(lasbda (k)
(s0alinst ’#lay k))
(turn_soves ‘(srl $#2))))
(fessible (turn.soves ‘(s sp2))))

*(if nothind else worksy then elay anuwhere)
(sakesos] rlav_any
(subsoal (sarcar ‘(lasbda (k)
{goalinst ’elay k)
(sprend sidsus

(delete.list nearcnr nearsidesas)
(delele_list nearcnr sidesus)
nearenr))))

’{ sos] to sieely rlay On 2 sevare)
(aakefors rlay (srl s02)
{countersoal ’(nil))
{fessible (and (null (environeent sel $r2))
{avalideove '(spl $#2) curside)))
(action (act '(srl $#2) curside))
{(uwrdsteaciion (sove ’(sel $p2) curside)))

